Download presentation
Presentation is loading. Please wait.
Published byDennis Hensley Modified over 6 years ago
1
The LIGHT project Status of the LIGHT experiments HICforFAIR PhysicsDay: Accelerator July 5th 2012 GSI Helmholtzcenter for Heavy Ion Research Abel Blazevic GSI Darmstadt Plasma Physics Department | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
2
Motivation Optimal use of laser accelerated ions requires beam forming, energy selection and debunching Z6 Target Area PHELIX Leading expertise in both fields (laser acceleration, accelerator technology) available at GSI, surrounding universities, and HI Z6 target area provides access to the PHELIX laser beam and to accelerator hardware (e.g. test beam, RF equipment, diagnostics) We can provide a versatile testbed to study laser-accelerated particles in combination with conventional accelerator structures
3
LIGHT: Laser Ion Generation, Handling and Transport
Step 1: Generation and Characterization of the proton beam Target optimization for high conversion efficiency (laser to ion) and low ion beam divergence angle Ion energy spectrum shaping Step 2: Collimation of the proton beam Separation of the electrons Selection of the proton energy interval Proton beam divergence control Space charge Step 3: Setting up of a buncher unit based on existing 108 MHz technology at GSI Compression of chosen energy interval Diagnostic of the compressed proton bunch Goal: proton bunch with 1010 protons in few ns with an energy of E = 10 MeV and DE = 4% | GSI | LIGHT | Abel Blazevic
4
Contributions / Responsibilities
Helmholtz Institute Jena Coordination Development and setup of a 100TW compressor for a 12 cm sub-aperture beam of PHELIX Short pulse diagnostics GSI PHELIX/PP, Acc., Beam Diag., AP Laser, timing, control system Beamline to target chamber Accelerator structures Proton beam diagnostics FZ Dresden-Rossendorf Solenoid for collimation + PSU TU Darmstadt Acceleration experiments Collimation simulations, target development JWG University Frankfurt Accelerator structure development Theoretical support | GSI | LIGHT | Abel Blazevic
5
Laser Ion Generation 2. Juli 2012 |
| GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
6
Experiment Setup Z6 target chamber sideview and focus diagnostic
half beam blocked by RCF in front full stack at back side 360 mm solenoid f-3 OAP target proton beam mirror Laser UNILAC ion beam | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
7
TNSA – Target Normal Sheath Acceleration
Number of Protons (surface contamination): 1014 (LLNL- Petawatt), exp. spectrum Maximum Energy: 60 MeV (LLNL Petawatt) 68 MeV (Trident) 65 MeV (Sandia) Pulse duration: few ps Small Emittance Divergence: <10° for highest energies up to 40° for low energies Efficiency: up to 9% Petawatt experiments 3/99 | GSI | LIGHT | Abel Blazevic
8
Proton/Ion spectrum (target: F on W)
C & O → q/m Proton line → energy F7+, up to 5 MeV/Nucleon → energy → q/m Ion species | GSI | LIGHT | Abel Blazevic
9
Divergence control ∅ 20 – 100 µm Apollo Targets 350 µm 250 µm
F c v y f p h s V u l L S w 2 5 8 O - x b Solenoid E 350 µm 250 µm ∅ 20 – 100 µm Mass limited Targets Combine WARP/PSC VORPAL and the Simulation Expertise of GSI/TUD/Frankfurt Cryo Targets | GSI | LIGHT | Abel Blazevic
10
Laser focus shaping Laser pulse solenoid energy filter target
(thin metal foil) drift pipe buncher cavity Laser pulse shaping | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
11
Handling | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
12
Pulsed Power Equipment
stand alone pulsed power system pulser located in nhelix capacitor bay possible charging up to 16 kV corresponds to kA current through coil (Bz,max = 8.7 T) open aperture: 40.5 mm (diameter) high capture efficiency 305 mm beam 150 mm supply cables 4 layers copper windings air | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
13
Beam transport through solenoid
Z6 target chamber experimental hall, GSI 1.1 MeV 3.2 MeV RCF pos. 1 layer 1 layer 2 RCF pos. 2 layer 3 layer 4 layer 5 4.5 MeV 5.5 MeV 7.5 MeV shot #17 target - 10 µm Au - flat foil RCF stack detectors 40 265 620 [mm] optional Unilac ion beam proton beam 1 2 pulsed 6.7 kA / 5.6 T laser 1054 nm transport of protons through solenoid - detection of half of the proton beam in front of the solenoid - full stack at the back side of the solenoid to see focussing and rotation of the beam Phelix 100 TW | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
14
Beam focussing into ion beam line
Z6 target chamber experimental hall, GSI target - 10 µm Au - flat foil RCF stack detector 40 265 620 [mm] optional Unilac ion beam proton beam layer 3 RCF pos. 3 shot #11 3 pulsed 6.7 kA / 5.6 T focussing of protons into Z6 ion beamline - detection at 925 mm behind target - focussing of 4.5 MeV protons - partikel numbers in focus ~5·108 - focal spot size ~3x4 mm² (FWHM) - focus shape due to 4 mrad tilt of solenoid - reproducible working system - good agreement to simulations laser 1054 nm Phelix 100 TW layer 3 RCF pos. 3 shot #13 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
15
Comparison Experiment and Simulation
3.7 MeV 6.5 MeV 8.7 MeV PHELIX experiment WARP - simulation | GSI | LIGHT | Abel Blazevic
16
Transport | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
17
Next steps: RF-Cavity progress so far.. next step Laser pulse solenoid
energy filter target (thin metal foil) drift pipe buncher cavity Plunger Drift Tubes rf cavity specified and tested 3 gap spiral resonator, rebuncher at MHz, 35 mm aperture, 100 kW rf power | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
18
RF cavity simulations Laser pulse solenoid energy filter target
(thin metal foil) drift pipe buncher cavity Beam transport simulations I | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
19
RF cavity simulations Laser pulse solenoid energy filter target
(thin metal foil) drift pipe buncher cavity Beam transport simulations II work of S. Yaramishev | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
20
Thank you ! LIGHT collaboration partners
A. Almomani3, V. Bagnoud2,4, W. Barth2, A. Blazevic2,4, O. Boine-Frankenheim1,2, C.Brabetz 3, T. Burris-Mog 5, S. Busold 1, T. Cowan 5, M. Droba 3, H. Eickhoff2, P.Forck 2, A. Gopal 4, K. Harres 1, S. Herzer 4, G. Hoffmeister 1, I. Hofmann2, O.Jäckel4, M. Kaluza 4, O.Kester 2, 3, F. Nürnberg 1, A. Orzhekhovskaya2, G.Paulus4, J. Polz 4, U. Ratzinger 3, C. Rödel 4, M. Roth1, T.Stöhlker2,4, A. Tauschwitz 2, W.Vinzenz 2, S. Yaramyshev 2, B. Zielbauer4 Technical University Darmstadt 1 Helmholtzzentrum GSI Darmstadt 2 Institute for Applied Physics at Frankfurt University 3 Helmholtz-Institute Jena 4 Helmholtzzentrum Dresden-Rossendorf 5 | GSI | LIGHT | Abel Blazevic 2. Juli 2012 |
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.