Download presentation
Presentation is loading. Please wait.
1
1D OF FINITE ELEMENT METHOD Session 4 – 6
Course : S Introduction to Finite Element Method Year : 2010 1D OF FINITE ELEMENT METHOD Session 4 – 6
2
COURSE 4 Content: 1D Element Types 1D Element Modelling 1D Solution
Example/Case Study Bina Nusantara
3
1D ELEMENT TYPES Bina Nusantara
4
Forces and Moments on 1D Element
1D ELEMENT MODELLING Forces and Moments on 1D Element Bina Nusantara
5
APPLICATION TO FINITE ELEMENT
Bina Nusantara
6
1D SOLUTION Global and Local Coordinate System Bina Nusantara
7
1D SOLUTION Bina Nusantara
8
1D SOLUTION Bina Nusantara
9
1D ELEMENT EXAMPLE u1 u2 Deformed shape f2 f1 x Node (a hinge) Element
Bina Nusantara
10
1D ELEMENT EXAMPLE Conjecture a displacement function u(x) x
Bina Nusantara
11
1D ELEMENT EXAMPLE Express u(x) in terms of nodal displacements by using boundary conditions. Deformed shape u(0) = u1 u(L) = u2 Bina Nusantara
12
1D ELEMENT EXAMPLE Sub (2) into (1)
Displacement polynomial that satisfies boundary conditions Bina Nusantara
13
Bar Element example Derive strain-displacement relationship by using mechanics theory Axial Strain Bina Nusantara
14
1D ELEMENT EXAMPLE Derive stress-displacement relationship by using elasticity theory Axial Stress Elastic Modulus Bina Nusantara
15
1D ELEMENT EXAMPLE Use principle of Virtual Work
Work = Stress x Strain x Volume Bar cross-sectional area A Internal work External work Bina Nusantara
16
1D ELEMENT EXAMPLE Equate internal and external work Stiffness matrix
Bina Nusantara
17
1D ELEMENT EXAMPLE Resultant stiffness matrix Bina Nusantara
18
EXAMPLE Axial deformation of a bar subjected to a uniform load
(1-D Poisson equation) u = axial displacement E=Young’s modulus = 1 A=Cross-sectional area = 1 Bina Nusantara
19
EXAMPLE Model the following shaft using two beam finite elements neglecting axial deformation, given the following data: Bina Nusantara
20
EXAMPLE Bina Nusantara
21
EXAMPLE Global and element coordinates are parallel. The Global nodal coordinates are then defined as ui, i =1, 2, , 6 . Now assign a set of generalized coordinates qi along same directions. Bina Nusantara
22
EXAMPLE Simple Form Bina Nusantara
23
EXAMPLE Bina Nusantara
24
EXAMPLE Bina Nusantara
25
EXAMPLE Bina Nusantara
26
EXAMPLE Bina Nusantara
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.