Presentation is loading. Please wait.

Presentation is loading. Please wait.

Napredno prepoznavanje ljudi koristeći Microsoft Azure Cognitive Services SLAVEN MIŠAK, Span d.o.o. IVAN MARKOVIĆ, Span d.o.o.

Similar presentations


Presentation on theme: "Napredno prepoznavanje ljudi koristeći Microsoft Azure Cognitive Services SLAVEN MIŠAK, Span d.o.o. IVAN MARKOVIĆ, Span d.o.o."— Presentation transcript:

1 Napredno prepoznavanje ljudi koristeći Microsoft Azure Cognitive Services SLAVEN MIŠAK, Span d.o.o.
IVAN MARKOVIĆ, Span d.o.o.

2

3 Agenda Uvod u Azure Cognitive Services Face API Emotion API Demo

4 UVOD U AZURE COGNITIVE SERVICES

5 Machine learning Big data
Large dataset Machine learning algorithms Extensive testing and validation Target example

6 Cognitve services origins
Microsoft Research Project Oxford ( Microsoft Azure SaaS How-old.net, TwinsOrNot.net, what-dog.net

7 Available services Vision Speech Language Knowledge Search
Computer vision Emotion Face Video Speech Bing Speech Custom recognition Speaker recognition Language Bing spell check Language understanding Linguistic analysis Text analysis WebLM Knowledge Academic Entity linking Knowledge exploration Recomendations Search Bing web search Bing image search Bing video search Bing news search Bing autosuggest

8 FACE API

9 Face API Two main functionalities: Face Detection Face Recognition

10 Face Detection Detect up to 64 human faces in an image.
Face detection can be done: By uploading image file Specifying a URL of an existing image on the web

11 Face API- Detection Steps
Subscribe for Face API and get subscription key Configure the Face API client library (or use REST API) Upload images to detect faces Mark faces in the image

12 Face API – Get Started faceServiceClient = new FaceServiceClient("Your subscription key"); private async Task<FaceRectangle[]> UploadAndDetectFaces(string imageFilePath) { try using (Stream imageFileStream = File.OpenRead(imageFilePath)) var faces = await faceServiceClient.DetectAsync(imageFileStream); var faceRects = faces.Select(face => face.FaceRectangle); return faceRects.ToArray(); } catch (Exception) return new FaceRectangle[0];

13 Face API – Get Started var requiedFaceAttributes = new FaceAttributeType[] { FaceAttributeType.Age, FaceAttributeType.Gender, FaceAttributeType.Smile, FaceAttributeType.FacialHair, FaceAttributeType.HeadPose, FaceAttributeType.Glasses }; var faces = await faceServiceClient.DetectAsync(imageUrl, returnFaceLandmarks: true, returnFaceAttributes: requiedFaceAttributes); foreach (var face in faces) { var id = face.FaceId; var attributes = face.FaceAttributes; var age = attributes.Age; var gender = attributes.Gender; var smile = attributes.Smile; var facialHair = attributes.FacialHair; var headPose = attributes.HeadPose; var glasses = attributes.Glasses; }

14 Face API - Face Attributes
Age Gender Smile Facial Hair Head Pose Glasses

15 Face API – face landmarks
27 predefined landmark points

16 Face API – Response example
JSON: [ { "faceId": "d585cde5-6e2e-4fb9-b46a-2e941a4efe0a", "faceRectangle": { "width": 289, "height": 289, "left": 266, "top": 292 }, "faceLandmarks": { "pupilLeft": { "x": 337.8, "y": "pupilRight": { "x": 478.5, "y": 378.1

17 Face API – Face Recognition
Four recognition functionalities: Face Verification Similar Face Searching Automatic Face Grouping Person Identification

18 Face Verification Request Response
{ "faceId1":"c5c24a d5d-978df ", "faceId2":"015839fb-fbd9-4f79-ace9-7675fc2f1dd9" } { "isIdentical":true, "confidence":0.9 }

19 Similar Face Searching
Request Response { "faceId":"c5c24a d5d-978df ", "faceListId":"sample_list", "maxNumOfCandidatesReturned":10 } [ { "persistedFaceId" : "015839fb-fbd9-4f79-ace9-7675fc2f1dd9", "confidence" : 0.82 }, ... ]

20 Face Grouping Request Response
{ "faceIds":[ "c5c24a d5d-978df ", "015839fb-fbd9-4f79-ace9-7675fc2f1dd9", "65d083d d1-af30-b626144bf0fb", "fce92aed-d578-4d2e f8af4492e", "30ea1073-cc9e-4652-b1e3-d08fb7b95315", "be386ab3-af e6d-4dae4c9fddb7", "fbd2a038-dbff-452c-8e79-2ee81b1aa84e", "b64d5e af2-b20a-5a750f8940e7" ] } { "groups": [ [ "c5c24a d5d-978df ", "015839fb-fbd9-4f79-ace9-7675fc2f1dd9", "fce92aed-d578-4d2e f8af4492e", "b64d5e af2-b20a-5a750f8940e7" ],[ "65d083d d1-af30-b626144bf0fb", "30ea1073-cc9e-4652-b1e3-d08fb7b95315" ] ], "messyGroup": [ "be386ab3-af e6d-4dae4c9fddb7" }

21 Face Identification Authorize the API call Create the person group
Define people for the person group Detect faces and register them to correct person Train the person group Identify a face against a defined person group

22 Face Identification – result example

23 Face API – Technical info
JPEG, PNG, GIF and BMP are supported. Max. File size is 4MB The detectable face size is between 36x36 and 4096x4096 pixels. A maximum of 64 faces could be detected

24 EMOTION API

25 Emotion API Returns the confidence across a set of emotions for each face in the image Happiness Sadness Surprise Anger Fear Contempt Disgust Neutral

26 Emotion API – Get Started
EmotionServiceClient emotionServiceClient = new EmotionServiceClient(subscriptionKey); //Optional parameter FaceRectangles[] Emotion[] emotionResult = await emotionServiceClient.RecognizeAsync(url);

27 DEMO

28 Q&A

29

30


Download ppt "Napredno prepoznavanje ljudi koristeći Microsoft Azure Cognitive Services SLAVEN MIŠAK, Span d.o.o. IVAN MARKOVIĆ, Span d.o.o."

Similar presentations


Ads by Google