Presentation is loading. Please wait.

Presentation is loading. Please wait.

CNT 4704 Computer Communication Networking (not “analysis”)

Similar presentations


Presentation on theme: "CNT 4704 Computer Communication Networking (not “analysis”)"— Presentation transcript:

1 CNT 4704 Computer Communication Networking (not “analysis”)
Cliff Zou School of Electrical Engineering and Computer Science University of Central Florida Fall 2009

2 About my self Office: HEC 335 Tel: 407-823-5015 czou@cs.ucf.edu
Office hour: Tuesday/Thursday 3pm – 5pm Course webpage: UCF Tegrity for online lecture video streaming Each lecture will be posted several hours after a class Use for homework assignment and grading Keeping grade private Easy homework submission Having a simple BBS channel

3 What is this course about?
Very few, very basic “analysis” (don’t be scared by the course’s official name) Introductory course in “computer networking” Focus on Internet architecture/protocols TCP/IP, 2 networking programming projects Several lab assignments (fun, real) (spam), Web. Ethernet, hub, wireless LAN One chapter on Internet security introduction Goals: Learn a lot (facts, principles and practice) Have fun (Use/apply/understand real world network immediately)

4 Student evaluation of this course
Fall 2005 (11): Excellent-55%, Very good-18.2% Good-18.2%, Fair-9.1%, Poor-0% Fall 2006 (6): Excellent-76.7%, Very good-21.7% Good-0%, Fair-1.7%, Poor-0% Fall 2007 (12): Excellent-41.7%, Very good-25% Good-25%, Fair-0%, Poor-8.33% Fall 2008 (5): started to use Tegrity Excellent-80%, Very good-20% Good-0%, Fair-0%, Poor-0%

5 Course information Prerequisites: Course materials:
Basic knowledge on Algorithms and Operating Systems C or C++ programming skills Basic usage of Linux Olympus account + my lab Linux for networking programming Course materials: Text: Computer Networking: A Top Down Approach Featuring the Internet, J. Kurose & K. Ross, Addison Wesley, 5th ed., 2009 Textbook online resource (see first page) Class notes

6 Course information (more)
Workload: Coursework approx amount approx % written homework                                         20% programming (C,C++)             2-3                         24% lab assignments (Ethereal)         2                            10% midterm exam                              1                             20% final exam                                    1                             26% The final grade will use +/- policy, i.e., you may get A, A-, B+, B, B- … grade.

7 Course information (even more)
In-class style: interaction, questions Real network programming (fun) Hands on experience: packet trace, spam Flexible: Teaching difficulty/speed/contents based on your feedback So please tell me freely your thinking and interests! Academic honesty

8 A top-down approach: local ISP regional ISP
We’ll cover networking top-down regional ISP End-system applications, end-end transport Network core: routing, hooking nets together Link-level protocols, e.g., Ethernet Other interesting stuff: Security wireless company network

9 Course Overview: Part 1: Introduction (text: Chapter 1) Application
What is the Internet? Application Web, , VOIP Application Transport TCP, UDP Transport Network IP Network Data Link Ethernet, cellular Data Link Physical link

10 Course Overview: Part 2: Application Layer (text: Ch. 2)
Principles of application-layer protocols World Wide Web: HTTP File transfer: FTP Electronic mail: The Internet's directory service: DNS VOIP (Voice Over IP) Socket programming PROGRAMMING ASSIGNMENT 1 If possible, have another networking program --- a simple web proxy

11 Course Overview: Part 3: Transport Layer (text Ch. 3)
Transport-layer services and principles Multiplexing and demultiplexing applications Connectionless transport: UDP Principles of reliable of data transfer TCP case study PROGRAMMING ASSIGNMENT 2 Principles of congestion control TCP congestion control

12 Course Overview: Part 4: Network Layer (text: Ch. 4)
introduction and network service model what’s inside a router? routing principles (algorithms) hierarchical routing IP: the Internet Protocol Internet routing: RIP, OSPF, BGP

13 Course Overview: Part 5: Link Layer, Local Area Networks (text: Ch. 5)
introduction, services error detection, correction multiple access protocols, LANs LAN addresses, ARP Ethernet

14 Course Overview: Part 6: Wireless and Mobile Networks (Ch 6)
wireless link characteristics the wireless link: 802.11 cellular Internet access Mobility principles mobility in practice: mobile IP mobility in cellular networks Sensor network, vehicular network introduction

15 Course Overview: Part 7: Network Security (text: Ch. 8)
what is network security? Introduction of cryptography authentication: Who are you? integrity key distribution, certification Internet security hot topics: Malware attacks, denial-of-service attacks, countermeasures Secure , firewall, honeypot, botnet

16 Summary Introductory, practical Know basic networking programming
All (almost) you need to know about Internet, and applications Many acronyms, don’t be frustrated


Download ppt "CNT 4704 Computer Communication Networking (not “analysis”)"

Similar presentations


Ads by Google