Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spatial Econometric Analysis Using GAUSS

Similar presentations


Presentation on theme: "Spatial Econometric Analysis Using GAUSS"— Presentation transcript:

1 Spatial Econometric Analysis Using GAUSS
4 Kuan-Pin Lin Portland State University

2 Spatial Econometric Models
Spatial Exogenous Model Spatial Lag Model Spatial Mixed Model Spatial Error Model Spatial AR(1) Spatial MA(1) Spatial ARMA(1,1) Spatial Error Components Model

3 Spatial Exogenous Model Lagged Explanatory Variables
The Model

4 Spatial Lag Model Lagged Dependent Variable
The Model

5 Spatial Mixed Model The Model

6 Spatial Error Models Spatial AR(1) Spatial MA(1) Spatial ARMA(1,1)

7 Spatial Error Components Model
The Model

8 Spatial Econometric Models
The General Model

9 Spatial Model Specification Tests
Moran Test Moran’s I Test Statistic Asymptotic Theory Bootstrap Method LM Test and Robust LM Test Spatial Error Model Spatial Lag Model

10 Hypothesis Testing The Basic Model

11 Moran-Based Test Statistics
Moran’s I Index Can not distinguish between spatial lag or spatial error

12 LM-Based Test Statistics
LM Test Statistic for Spatial Error Can not distinguish between spatial AR or spatial MA

13 LM-Based Test Statistics
LM Test Statistic for Spatial Lag

14 LM-Based Test Statistics
Robust LM Test Statistic for Spatial Error Robust LM Test Statistic for Spatial Lag

15 LM-Based Test Statistics
Joint LM Test for Spatial Correlation (Spatial Lag and Spatial Error)

16 Hypothesis Testing Example
Crime Equation (anselin.3) (Crime Rate) = a + b (Family Income) + g (Housing Value) + e (numbers in parentheses are p-values of the tests) Moran-I LM-err LM-lag Robust LM-err Robust Hetero. Crime Rate 5.6753 (0.000) 26.902 Family Income 4.6624 17.841 Housing Value 2.1529 (0.031) 3.3727 (0.066) e 2.954 (0.003) 5.723 (0.017) 9.363 (0.002) 0.0795 (0.778) 3.72 (0.054) 1.058 (0.589)

17 Hypothesis Testing Example
China Output 2006 (china.6) ln(GDP) = a + b ln(L) + g ln(K) + e (numbers in parentheses are p-values of the tests) Moran-I LM-err LM-lag Robust LM-err Robust Hetero. ln(GDP) 1.949 (0.052) 2.359 (0.125) ln(L) 1.946 2.351 ln(K) 2.387 (0.017) 3.7658 e 1.534 0.972 (0.324) 0.005 (0.942) 1.094 (0.296) 0.127 (0.721) 1.719 (0.423)

18 References L. Anselin, and A. K. Bera, R. J.G.M. Florax, and M. Yoon (1996), “Simple Diagnostic Tests for Spatial Dependence,” Regional Science and Urban Economics, 26, L. Anselin, and H. Kelejian (1997), “Testing for Spatial Autocorrelation in the Presence of Endogenous Regressors,” International Regional Science Review, 20, 153–182. L. Anselin, and S. Rey (1991), “Properties of Tests for Spatial Dependence in Linear Regression Models,” Geographical Analysis, 23, H. Kelejian, and I.R. Prucha (2001)., “On the Asymptotic Distribution of Moran I Test Statistic with Applications,” Journal Econometrics, 104,


Download ppt "Spatial Econometric Analysis Using GAUSS"

Similar presentations


Ads by Google