Download presentation
Presentation is loading. Please wait.
1
Subtopic 2.3: Compound Angle Formulae
Lecture 4 of 12 Topic : Trigonometry Subtopic 2.3: Compound Angle Formulae
2
Learning outcomes: (a) express trigonometry products as sum express trigonometry sums as products (to derive and use factor formulae)
3
FACTOR FORMULAE sin(A+B) + sin(A-B) = 2sinAcosB …..(1)
sin(A+B) - sin(A-B) = 2cosAsinB …..(2) cos(A+B) + cos(A-B) = 2cosAcosB …..(3) cos(A+B) - cos(A-B) = -2sinAsinB …..(4)
4
To derive formulae 1 to 4, we use the compound angle formulae
sin(A+B) = sinAcosB + cosAsinB …..(a) sin(A-B) = sinAcosB – cosAsinB …..(b) (a) + (b), sin(A+B) +sin(A-B) = 2sinAcosB (a) - (b) , sin(A+B) – sin(A-B) = 2cosAsinB
5
Similarly for cos(A+B) and cos(A-B), we get
cos(A+B) + cos(A-B) = 2cosAcosB cos(A+B) - cos(A-B) = -2sinAsinB By substituting A+B = M ……. (1) and A –B = N …… (2) (1) + (2) (1) – (2)
6
cos(A+B) + cos(A-B) = 2cosAcosB
By substituting A+B = M A –B = N cos(A+B) + cos(A-B) = 2cosAcosB cos M + cos N = 2cos cos
7
Similarly, we will obtain the NEW form of the factor formulae
8
Example 1 Find the following values without using calculator
9
Solution
12
Example 2 Express each sum or difference as a product of sine or cosine.
13
solution
14
(b)
16
Example 3 Express each of the following products as a sum of sine or cosine.
17
Solution sin(A+B) + sin(A-B) = 2sinAcosB
19
Example 4 Show that Solution
20
Example 5 Prove the following identities; Solution
22
Example 6 Prove that Solution RHS : Therefore
23
Alternative Method : LHS :
24
Alternative Method : RHS : Therefore
25
Conclusions sin(A+B) + sin(A-B) = 2sinAcosB
sin(A+B) - sin(A-B) = 2cosAsinB cos(A+B) + cos(A-B) = 2cosAcosB cos(A+B) - cos(A-B) = -2sinAsinB
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.