Download presentation
Presentation is loading. Please wait.
Published byOscar Floyd Modified over 6 years ago
1
Reversible Data Hiding in Encrypted Images With Distributed Source Encoding
Source: IEEE Transactions on Circuits and Systems for Video Technology Vol.26 No.4 April 2016 Authors: Zhenxing Qian; Xinpeng Zhang Speaker: ZhaoHua Zhu Date: 17/11/2016
2
Outline Framework Proposed Scheme Experiment Result Conclusions
3
Framework
4
Proposed Scheme(1/11) ——Data Embedding
Original Image Encrypted Image Sub Encrypted Image
5
Proposed Scheme(2/11) ——Data Embedding
Sub_1 Sub_2 13 9 5 1 14 10 6 2 Sub_2 Sub_3 Sub_4 MSB plane of sub_2 ~ 4 1 1 1 15 11 7 3 16 13 8 4 Queue: … 3M*N / 4 Sub_3 Sub_4 Selection key : KSL Sub Encrypted Image Queue: …… …… L (1 < L < 3M*N/4) Shuffle key : KSF Queue: …… ……
6
Proposed Scheme(3/11) ——Data Embedding
Queue: …… …… Divide shuffled bits into K groups, each group contain n bits K = floor(L/n) S(1,r) : (1 1 1 … 0 0) S(2,r) : (0 0 0 … 0 1) … S(k,r) : (0 1 0 … 0 0) r C(1,n) : (0 0 1 … 0 0) C(2,n) : (0 1 1 … 0 1) … C(k,n) : (0 1 1 … 1 0) n compressed H is Sparse parity check matrix size n * r
7
Proposed Scheme(4/11) ——Data Embedding
HT * = A example of compress
8
Proposed Scheme(5/11) ——Data Embedding
1 0 … 1 1 1 … 0 0 1 … 1 S(1,r) : (1 1 1 … 0 0) S(2,r) : (0 0 0 … 0 1) … S(k,r) : (0 1 0 … 0 0) r C’(1,n) : (1 1 1 … … 1) C’(2,n) : (0 0 0 … … 0) … C’(k,n) : (0 1 0 … … 1) r (n-r) Embed additional data
9
Proposed Scheme(5/11) ——Virtual Channel and Embedding Rate
Theory: Check bits r r Slepian–Wolf theorem DSC and distributed source decoding. Example: X,Y is 3 bits message. Constraint of X,Y : Hamming Distance of X,Y less than or equal to 1. 000 001 010 100 Y = r When X = {0,0,0} = 2
10
Proposed Scheme(6/11) ——Data Extraction
MSB plane of sub_2 ~ 4 Sub_2 Sub_3 Sub_4 1 1 1 Queue Encrypted Image Sub Encrypted Image Data: …
11
Proposed Scheme(7/11) ——Data Extraction
3M*N / 4 Selection key : KSL Data: …… …… L (1 < L < 3M*N/4) Shuffle key : KSF Data: …… …… Divide data into K groups, each group contain n bits C’(1,n) : (1 1 1 … … 1) C’(2,n) : (0 0 0 … … 0) … C’(k,n) : (0 1 0 … … 1) r (n-r) Last (n-r) bits in each group is hiding mseeage 1 0 … 1 1 1 … 0 0 1 … 1
12
Proposed Scheme(8/11) ——Image Decryption and Estimation
bilinear interpolation Encrypted Image Sub Decrypted Image reference Image B Sub_2 Sub_3 Sub_4 14 10 6 2 15 11 7 3 16 13 8 4 optimize Formula A Last 7 LSB bits in sub images
13
Proposed Scheme(9/11) ——Image Decryption and Estimation
Optimize formula: A’ is optimized image A is decryption image B is reference image
14
Proposed Scheme(10/11) ——Lossless Recovery
C’(1,n) : (1 1 1 … … 1) C’(2,n) : (0 0 0 … … 0) … C’(k,n) : (0 1 0 … … 1) r (n-r) S(1,n) : (1 1 1 … 0 0) S(2,n) : (0 0 0 … 0 1) … S(k,n) : (0 1 0 … 0 0) r U(1,n) : (0 0 1 … 0 0) U(2,n) : (0 1 1 … 0 1) … U(k,n) : (0 1 1 … 1 0) n Encrypted Image reference Image B Encrypted Image
15
Proposed Scheme(11/11) ——Lossless Recovery
q is error probability of the virtual channel Distributed source decoding using BPA.
16
Experiment Result(1/4) Image size : 512 * 512
(c) Encrypted image containing secret data (a) Original Image (b) Encrypted Image (d) Recovered Image Image size : 512 * 512 embedding rate : bpp (e) Difference between (a) and (d) (f) Perfectly Recovered Image
17
Experiment Result(2/4) [7] W. Puech, M. Chaumont, and O. Strauss, “A reversible data hiding method for encrypted images,” Proc. SPIE, Secur., Forensics,Steganogr., Watermarking Multimedia Contents X, vol. 6819, p E,Feb [8] X. Zhang, “Reversible data hiding in encrypted image,” IEEE Signal Process. Lett., vol. 18, no. 4, pp. 255–258, Apr [9] W. Hong, T.-S. Chen, and H.-Y. Wu, “An improved reversible data hiding in encrypted images using side match,” IEEE Signal Process. Lett., vol. 19, no. 4, pp. 199–202, Apr [10] X. Zhang, “Separable reversible data hiding in encrypted image,”IEEE Trans. Inf. Forensics Security, vol. 7, no. 2, pp. 826–832,Apr [12] Z. Qian, X. Han, and X. Zhang, “Separable reversible data hiding in encrypted images by n-nary histogram modification,” in Proc. 3rd Int. Conf. Multimedia Technol. (ICMT), Guangzhou, China, 2013,pp. 869–876.
18
Experiment Result(3/4) Comparisons of four different approaches using the images. (a) Lena. (b) Baboon. (c) Lake. (d) Man.
19
Experiment Result(4/) Comparison of approximately recovered image quality in (a) [11] and (b) [13]. [11] K. Ma, W. Zhang, X. Zhao, N. Yu, and F. Li, “Reversible data hiding in encrypted images by reserving room before encryption,”IEEE Trans. Inf. Forensics Security, vol. 8, no. 3, pp. 553–562,Mar [13] W. Zhang, K. Ma, and N. Yu, “Reversibility improved data hiding in encrypted images,” Signal Process., vol. 94, pp. 118–127, Jan
20
Conclusion This method can achieve higher embedding capacity in encrypted images than other method, and can deal with different key.
21
Thank You
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.