Presentation is loading. Please wait.

Presentation is loading. Please wait.

Pengujian Parameter Regresi dan Korelasi Pertemuan 20

Similar presentations


Presentation on theme: "Pengujian Parameter Regresi dan Korelasi Pertemuan 20"— Presentation transcript:

1

2 Pengujian Parameter Regresi dan Korelasi Pertemuan 20
Matakuliah : L0104 / Statistika Psikologi Tahun : 2008 Pengujian Parameter Regresi dan Korelasi Pertemuan 20

3 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung dugaan parameter regresi dan menguji keberartiannya. 3 Bina Nusantara

4 Inferensia parameter regresi Koefisien korelasi Koefisien determinasi
Outline Materi Inferensia parameter regresi Koefisien korelasi Koefisien determinasi Inferesia koefisien korelasi 4 Bina Nusantara

5 Testing for Significance
To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of β1 is zero. Two tests are commonly used t Test F Test Both tests require an estimate of σ 2, the variance of e in the regression model. Bina Nusantara

6 Testing for Significance
An Estimate of σ 2 The mean square error (MSE) provides the estimate of σ 2, and the notation σ2 is also used. s2 = MSE = SSE/(n-2) where: Bina Nusantara

7 Testing for Significance
An Estimate of σ To estimate σ we take the square root of σ 2. The resulting s is called the standard error of the estimate. Bina Nusantara

8 Testing for Significance: t Test
Hypotheses H0: β1 = 0 Ha: β1 ≠ 0 Test Statistic Rejection Rule Reject H0 if t < -tor t > t where t is based on a t distribution with n - 2 degrees of freedom. Bina Nusantara

9 Contoh Soal: Reed Auto Sales
t Test Hypotheses H0: β1 = 0 Ha: β1 ≠ 0 Rejection Rule For α = .05 and d.f. = 3, t.025 = 3.182 Reject H0 if t > 3.182 Test Statistics t = 5/1.08 = 4.63 Conclusions Reject H0 Bina Nusantara

10 Confidence Interval for β1
We can use a 95% confidence interval for β1 to test the hypotheses just used in the t test. H0 is rejected if the hypothesized value of β1 is not included in the confidence interval for β1. Bina Nusantara

11 Confidence Interval for 1
The form of a confidence interval for 1 is: where b1 is the point estimate is the margin of error is the t value providing an area of α/2 in the upper tail of a t distribution with n - 2 degrees of freedom Bina Nusantara

12 Contoh Soal: Reed Auto Sales
Rejection Rule Reject H0 if 0 is not included in the confidence interval for β1. 95% Confidence Interval for β1 = (1.08) = / or to 8.44/ Conclusion Reject H0 Bina Nusantara

13 Testing for Significance: F Test
Hypotheses H0: 1 = 0 Ha: 1 = 0 Test Statistic F = MSR/MSE Rejection Rule Reject H0 if F > F where F is based on an F distribution with 1 d.f. in the numerator and n - 2 d.f. in the denominator. Bina Nusantara

14 Example: Reed Auto Sales
F Test Hypotheses H0: 1 = 0 Ha: 1 = 0 Rejection Rule For  = .05 and d.f. = 1, 3: F.05 = 10.13 Reject H0 if F > Test Statistic F = MSR/MSE = 100/4.667 = 21.43 Conclusion We can reject H0. Bina Nusantara

15 Some Cautions about the Interpretation of Significance Tests
Rejecting H0: β1 = 0 and concluding that the relationship between x and y is significant does not enable us to conclude that a cause-and-effect relationship is present between x and y. Just because we are able to reject H0: β1 = 0 and demonstrate statistical significance does not enable us to conclude that there is a linear relationship between x and y. Bina Nusantara

16 Using the Estimated Regression Equation for Estimation and Prediction
Confidence Interval Estimate of E(yp) Prediction Interval Estimate of yp yp + t/2 sind where the confidence coefficient is 1 -  and t/2 is based on a t distribution with n - 2 d.f. Bina Nusantara

17 Contoh Soal: Reed Auto Sales
Point Estimation If 3 TV ads are run prior to a sale, we expect the mean number of cars sold to be: y = (3) = 25 cars Confidence Interval for E(yp) 95% confidence interval estimate of the mean number of cars sold when 3 TV ads are run is: = to cars Prediction Interval for yp 95% prediction interval estimate of the number of cars sold in one particular week when 3 TV ads are run is: = to cars ^ Bina Nusantara

18 Residual Analysis Residual for Observation i yi – yi
Standardized Residual for Observation i where: ^ ^ ^ ^ Bina Nusantara

19 Contoh Soal: Reed Auto Sales
Residuals Bina Nusantara

20 Contoh Soal: Reed Auto Sales
Residual Plot Bina Nusantara

21 Residual Analysis Detecting Outliers
An outlier is an observation that is unusual in comparison with the other data. Minitab classifies an observation as an outlier if its standardized residual value is < -2 or > +2. This standardized residual rule sometimes fails to identify an unusually large observation as being an outlier. This rule’s shortcoming can be circumvented by using studentized deleted residuals. The |i th studentized deleted residual| will be larger than the |i th standardized residual|. Bina Nusantara

22 Selamat Belajar Semoga Sukses
Bina Nusantara


Download ppt "Pengujian Parameter Regresi dan Korelasi Pertemuan 20"

Similar presentations


Ads by Google