Download presentation
Presentation is loading. Please wait.
Published byAllen Marshall Modified over 6 years ago
2
Single Bit ALU 3 R e s u l t O p r a i o n 1 C y I B v b 2 L S f w d O
3 R e s u l t O p r a i o n 1 C y I B v b 2 L S f w d O v e r f l o w c t i o n b .
3
CarryOut = ab + aCI + bCI a b CI + CarryOut
4
c0 a0 b0 a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 2 gates c1 4 gates c2 c3 6 gates Ripple Carry c4 ci+1 = ai bi + ai ci + bi ci 8 gates 10 gates c5 c6 12 Gates
5
Carry Lookahead Adder ci is CarryIn i
c1 = a0 b0 + (a0+b0)c0
6
Carry Lookahead Adder ci is CarryIn i
c1 = a0 b0 + (a0+b0)c0 c2 = a1 b1 + (a1+b1)c1 = a1 b1 + (a1+b1)[a0 b0 + (a0+b0)c0] = a1b1+a1a0b0+a1a0c0+a1b0c0+b1a0b0+ b1a0c0+b1b0c0
7
c1 = a0 b0 + (a0+b0)c0 c2 = a1 b1 + (a1+b1)c1
c lah c2 c1 c1 = a0 b0 + (a0+b0)c0 c2 = a1 b1 + (a1+b1)c1 = a1 b1 + (a1+b1)[a0 b0 + (a0+b0)c0] = a1b1+a1a0b0+a1a0c0+a1b0c0+b1a0b0+b1a0c0+b1b0c0 + c2
8
Carry Lookahead Adder ci is CarryIn i
c1 = a0 b0 + (a0+b0)c0 c2 = a1 b1 + (a1+b1)c1 = a1 b1 + (a1+b1)[a0 b0 + (a0+b0)c0] = a1b1+a1a0b0+a1a0c0+b1a0b0+b1a0c0+b1b0c0 One bit lookahead ci two gate delays from ci-2 for i even Reduces gate delays for 32 bits from 64 to 32
9
Carry Lookahead Adder ci is CarryIn i
c1 = a0 b0 + (a0+b0)c0 c2 = a1 b1 + (a1+b1)c1 = a1 b1 + (a1+b1)[a0 b0 + (a0+b0)c0] c2 =a1b1+a1a0b0+a1a0c0+a1b0c0+b1a0b0+b1a0c0+b1b0c0 One bit lookahead ci two gate delays from ci-2 for i even Reduces gate delays for 32 bits from 64 to 32 c3 = a2b2+(a2+b2)c2 c4 = a3b3+(a3+b3)c3 c4 = a3b3+(a3+b3) [a2b2+(a2+b2)c2] c4 =a3b3+a3a2b2+a3a2c2+a3b2c2+b3a2b2+b3a2c2+b3b2c2
10
c0 a0 b0 a1 b1 One Bit Lookahead a2 b2 a3 b3 c1 c2 a4 b4 a5 b5 c3 c4
c lah a2 b a3 b3 c1 c c2 c lah a4 b a5 b5 c3 c4 c lah c 6 Gates c5 c6
11
Carry Lookahead Adder ci is CarryIn i
c1 = a0 b0 + (a0+b0)c0 c2 = a1 b1 + (a1+b1)c1 = a1 b1 + (a1+b1)[a0 b0 + (a0+b0)c0] c3 = a2 b2 + (a2+b2)c2 = a2 b2 + (a2+b2){a1 b1+(a1+b1)[a0 b0+(a0+b0)c0]}
12
Carry Lookahead Adder ci is CarryIn i
c1 = a0 b0 + (a0+b0)c0 c2 = a1 b1 + (a1+b1)c1 = a1 b1 + (a1+b1)[a0 b0 + (a0+b0)c0] c3 = a2 b2 + (a2+b2)c2 = a2 b2 + (a2+b2){a1 b1+(a1+b1)[a0 b0+(a0+b0)c0]} Note the patterns generate gi = ai bi propagate pi = ai + bi ci+1 = gi + pi ci if gi = 1, ci+1 = 1, if gi = 0 and pi = 1, ci+1 = ci
13
Carry Lookahead Adder ci is CarryIn i
generate gi = ai bi propagate pi = ai + bi ci+1 = gi + pi ci c1 = g0+p0c0
14
Carry Lookahead Adder ci is CarryIn i
generate gi = ai bi propagate pi = ai + bi ci+1 = gi + pi ci c1 = g0+p0c0 c2 = g1+p1g0+p1p0c0
15
Carry Lookahead Adder ci is CarryIn i
generate gi = ai bi propagate pi = ai + bi ci+1 = gi + pi ci c1 = g0+p0c0 c2 = g1+p1g0+p1p0c0 c3 = g2+p2g1+p2p1g0+p2p1p0c0
16
Carry Lookahead Adder ci is CarryIn i
generate gi = ai bi propagate pi = ai + bi ci+1 = gi + pi ci c1 = g0+p0c0 c2 = g1+p1g0+p1p0c0 c3 = g2+p2g1+p2p1g0+p2p1p0c0 c4 = g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0
17
Carry Lookahead Adder ci is CarryIn i
generate gi = ai bi propagate pi = ai + bi ci+1 = gi + pi ci c1 = g0+p0c0 c2 = g1+p1g0+p1p0c0 c3 = g2+p2g1+p2p1g0+p2p1p0c0 c4 = g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0 Limited by Gate Fan-in contraints
18
Carry Lookahead Adder ci is CarryIn i
ci+1 = gi + pi ci c1 = g0+p0c0 c2 = g1+p1g0+p1p0c0 c3 = g2+p2g1+p2p1g0+p2p1p0c0 c4 = g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0 c5 = g4+p4c4 c6 = g5+p5g4+p5p4c4 c7 = g6+p6g5+p6p5g4+p6p5p4c4 c8 = g7+p7g6+p7p6g5+p7p6p5g4+p7p6p5p4c4 Each 4 bit stage has 2 gate delays per stage + 1 for g & p
19
Using Generate & Propagate
4 bit Carry Lookahead Using Generate & Propagate c0 a0,...,a3 b0,...,b3 generate gi = ai bi propagate pi = ai + bi ci+1 = gi + pi ci ALU s0,...s3 c4 a4,...,a7 b4,...,b7 g p ALU s4,...,s7 1 c8 g p a8,...,a11 b8,...,b11 ALU s8,...s11 2 c12 a12,...,a15 b12,...,b15 g p ALU s12,...,s15 3 c16
20
4 bit Carry Lookahead 2nd Level Lookahead c0 a0,...,a3 b0,...,b3 ALU
so,...s3 c4 a4,...,a7 b4,...,b7 g p ALU s4,...,s7 1 c8 g p a8,...,a11 b8,...,b11 ALU s8,...s11 2 c12 c8 a12,...,a15 b12,...,b15 g p G P ALU s12,...,s15 3 c16
21
G2 = g11+p11g10+p11p10g9+p11p10p9g8 P2 = p11p10p9p8 c12= G2 +P2c8 c8 g
a8,...,a11 b8,...,b11 ALU s8,...s11 2 c12 a12,...,a15 b12,...,b15 g p G P ALU s12,...,s15 3 c16
22
G2 = g11+p11g10+p11p10g9+p11p10p9g8 P2 = p11p10p9p8 c12= G2 +P2c8
c13=g12+p12G2+p12P2c8 c8 g p a8,...,a11 b8,...,b11 ALU s8,...s11 2 c12 a12,...,a15 b12,...,b15 g p G P ALU s12,...,s15 3 c16
23
G2 = g11+p11g10+p11p10g9+p11p10p9g8 P2 = p11p10p9p8 c12= G2 +P2c8
c13=g12+p12G2+p12P2c8 c14=g13+p13g12+p13p12G2+p13p12P2c8 c8 g p a8,...,a11 b8,...,b11 ALU s8,...s11 2 c12 a12,...,a15 b12,...,b15 g p G P ALU s12,...,s15 3 c16
24
G2 = g11+p11g10+p11p10g9+p11p10p9g8 P2 = p11p10p9p8 c12= G2 +P2c8
c13=g12+p12G2+p12P2c8 c14=g13+p13g12+p13p12G2+p13p12P2c8 c15=g14+p14g13+p14p13g12+p14p13p12G2 +p14p13p12P2c8 c8 g p a8,...,a11 b8,...,b11 ALU s8,...s11 2 c12 a12,...,a15 b12,...,b15 g p G P ALU s12,...,s15 3 c16
25
G2 = g11+p11g10+p11p10g9+p11p10p9g8 P2 = p11p10p9p8 c12= G2 +P2c8
c13=g12+p12G2+p12P2c8 c14=g13+p13g12+p13p12G2+p13p12P2c8 c15=g14+p14g13+p14p13g12+p14p13p12G2 +p14p13p12P2c8 c16=g15+etc c8 g p a8,...,a11 b8,...,b11 ALU s8,...s11 2 c12 a12,...,a15 b12,...,b15 g p G P ALU s12,...,s15 3 c16
26
Logical Instructions shift left logical sll Shift left shamt bits and fill with 0’s sll $s1, $s2, 10 # $s1 = $s2 << 10 op rs rt rd shamt funct
27
Logical Instructions shift left logical sll Shift left shamt bits and fill with 0’s sll $s1, $s2, 10 # $s1 = $s2 << 10 op rs rt rd shamt funct shift right logical srl Shift right shamt bits and fill with 0’s srl $t0, $s0, 16 # $t0 = $s0 >> 16
28
Logical Instructions logical AND and bit- by-bit logical AND and $s0, $s1, $s2 # $s0 = $s1 & $s2 op rs rt rd shamt funct
29
Logical Instructions logical AND and bit- by-bit logical AND and $s0, $s1, $s2 # $s0 = $s1 & $s2 op rs rt rd shamt funct logical AND immediate andi $t0, $t1, 7 # $t0 = $t1 & ( )
30
Logical Instructions logical AND and bit- by-bit logical AND and $s0, $s1, $s2 # $s0 = $s1 & $s2 op rs rt rd shamt funct logical AND immediate andi $t0, $t1, 7 # $t0 = $t1 & ( ) logical OR or $s1, $t1, $s2 # $s1 = $t1 | $s2 logical OR immediate ori $t1, $s1, 8 # $t1 = $s1 | ( )
31
Multiplication - Positive numbers
Example: Multiplicand x Multiplier
32
Multiplication - Positive numbers
Example: Multiplicand x Multiplier 0010
33
Multiplication - Positive numbers
Example: Multiplicand x Multiplier 0010
34
Multiplication - Positive numbers
Example: Multiplicand x Multiplier 0010 0000
35
Multiplication - Positive numbers
Example: Multiplicand x Multiplier 0010 0000
36
Multiplication - Positive numbers
Example: Multiplicand x Multiplier 0010 0000 Product
37
Multiplication - Positive numbers
Example: Multiplicand n bits x Multiplier m bits add shift left and add shift left and do nothing shift left and add Product n+m bits
38
Multiplicand 00000010 Multiplier 1011 Control Test Product 00000000
Shift left Multiplier 1011 8 bit ALU Control Test Shift right Product 1. 1 implies add
39
Multiplicand 00000010 Multiplier 1011 Control Test Product 00000010
Shift left Multiplier 1011 8 bit ALU Shift right Control Test Product 1. 1 implies add 2. Shift
40
Multiplicand 00000100 Multiplier 1011 Control Test Product 00000010
Shift left Multiplier 1011 8 bit ALU Shift right Control Test Product 1. 1 implies add
41
Multiplicand 00000100 Multiplier 1011 Control Test Product 00000110
Shift left Multiplier 1011 8 bit ALU Shift right Control Test Product 1 implies add Shift
42
Multiplicand 00001000 Multiplier 1011 Control Test Product 00000110
Shift left Multiplier 1011 8 bit ALU Shift right Control Test Product 0 no op
43
Multiplicand 00001000 Multiplier 1011 Control Test Product 00000110
Shift left Multiplier 1011 8 bit ALU Shift right Control Test Product 0 no op Shift
44
Multiplicand 00010000 Multiplier 1011 Control Test Product 00000110
Shift left Multiplier 1011 8 bit ALU Shift right Control Test Product 1 implies add
45
Multiplicand 00010000 Multiplier 1011 Control Test Product 00010110
Shift left Multiplier 1011 8 bit ALU Shift right Control Test Product 1 implies add Shift
46
Multiplicand 00100000 Multiplier 1011 Control Test Product 00010110
Shift left Multiplier 1011 8 bit ALU Shift right Control Test Product
47
Note: Half of the bits always 0 Multiplicand 00100000 Multiplier 1011
Shift left Multiplier 1011 8 bit ALU Shift right Control Test Product
48
Multiplication - Positive numbers – Shift Sum
Example: Multiplicand x Multiplier 0010
49
Multiplication - Positive numbers – Shift Sum
Example: Multiplicand x Multiplier 0010
50
Multiplication - Positive numbers
Multiplication - Positive numbers – Shift Sum Example: Multiplicand x Multiplier 0010 00110
51
Multiplication - Positive numbers
Multiplication - Positive numbers – Shift Sum Example: Multiplicand x Multiplier 0010 00110
52
Multiplication - Positive numbers
Multiplication - Positive numbers – Shift Sum Example: Multiplicand x Multiplier 0010 00110
53
Multiplication - Positive numbers
Multiplication - Positive numbers – Shift Sum Example: Multiplicand x Multiplier 0010 00110
54
Multiplicand 0010 Multiplier 1011 Control Test Product 00000000
4 bit ALU Control Test Shift right Product 1. 1 implies add Shift right
55
Multiplicand 0010 Multiplier 1011 Control Test Product 00100000
4 bit ALU Control Test Shift right Product 1 implies add Shift Shift right
56
Multiplicand 0010 Multiplier 1011 Control Test Product 00010000
4 bit ALU Control Test Shift right Product 1 implies add Shift right
57
Multiplicand 0010 Multiplier 1011 Control Test Product 00110000
4 bit ALU Control Test Shift right Product 1 implies add Shift Shift right
58
Multiplicand 0010 Multiplier 1011 Control Test Product 00011000
4 bit ALU Control Test Shift right Product 0 no op Shift Shift right
59
Multiplicand 0010 Multiplier 1011 Control Test Product 00001100
4 bit ALU Control Test Shift right Product 1 implies add Shift right
60
Multiplicand 0010 Multiplier 1011 Control Test Product 00101100
4 bit ALU Control Test Shift right Product 1 implies add Shift Shift right
61
Multiplicand 0010 Multiplier 1011 Control Test Product 00010110
4 bit ALU Control Test Shift right Product Shift right
62
Note: Product uses space as Multiplier decreases
Multiplicand 0010 Multiplier 1011 4 bit ALU Control Test Shift right Product Shift right Note: Product uses space as Multiplier decreases
63
Multiplicand 0010 Control Test Product 00001011 1. 1 implies add
4 bit ALU Control Test Product 1. 1 implies add Shift right Multiplier (1011)
64
Multiplicand 0010 Control Test Product 00101011 1 implies add Shift
4 bit ALU Control Test Product 1 implies add Shift Shift right Multiplier (1011) Multiplier
65
Multiplicand 0010 Control Test Product 00010101 1 implies add
4 bit ALU Control Test Product 1 implies add Shift right Multiplier (1011) Multiplier
66
Multiplicand 0010 Control Test Product 00110101 1 implies add Shift
4 bit ALU Control Test Product 1 implies add Shift Shift right Multiplier (1011) Multiplier
67
Multiplicand 0010 Control Test Product 00011010 0 no op Shift
4 bit ALU Control Test Product 0 no op Shift Shift right Multiplier (1011) Multiplier
68
Multiplicand 0010 Control Test Product 00001101 1 implies add
4 bit ALU Control Test Product 1 implies add Shift right Multiplier (1011) Multiplier
69
Multiplicand 0010 Control Test Product 00101101 1 implies add Shift
4 bit ALU Control Test Product 1 implies add Shift Shift right Multiplier (1011) Multiplier
70
Multiplicand 0010 Control Test Product 00010110 Multiplier (1011)
4 bit ALU Control Test Product Shift right Multiplier (1011) Multiplier
71
MIPS Instructions for Multiply and Divide
Hi,Lo are two 32 bit registers for Product and Remainder multiply mult $s1, $s2 # Hi,Lo = $s1 x $s2 For signed numbers, 1. determine the sign of the product 2. convert to positive representation 3. multiply 4. determine the sign and convert to 2’s complement if needed
72
MIPS Instructions for Multiply and Divide
Hi,Lo are two 32 bit registers for Product and Remainder multiply mult $s1, $s2 # Hi,Lo = $s1 x $s2 multiply unsigned multu $s1, $s2 # Hi,Lo = $s1 x $s2 ( unsigned) MIPS ignores overflow, so it is up to the software. What is the overflow condition for mult $s1, $s2?
73
MIPS Instructions for Multiply and Divide
Hi,Lo are two 32 bit registers for Product and Remainder multiply mult $s1, $s2 # Hi,Lo = $s1 x $s2 multiply unsigned multu $s1, $s2 # Hi,Lo = $s1 x $s2 ( unsigned) MIPS ignores overflow, so it is up to the software. What is the overflow condition for mult $s1, $s2? Hi must be zero or the sign extension of Lo.
74
MIPS Instructions for Multiply and Divide
Hi,Lo are two 32 bit registers for Product and Remainder multiply mult $s1, $s2 # Hi,Lo = $s1 x $s2 multiply unsigned multu $s1, $s2 # Hi,Lo = $s1 x $s2 ( unsigned) move from Hi mfhi $s3 # $s3 = Hi
75
MIPS Instructions for Multiply and Divide
Hi,Lo are two 32 bit registers for Product and Remainder multiply mult $s1, $s2 # Hi,Lo = $s1 x $s2 multiply unsigned multu $s1, $s2 # Hi,Lo = $s1 x $s2 ( unsigned) move from Hi mfhi $s3 # $s3 = Hi move from Lo mflo $s3 # $s3 = Lo
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.