Download presentation
Presentation is loading. Please wait.
Published byEaster Small Modified over 6 years ago
1
II Acoustic Reality II.5 (M Sept 25) The Euler Space and Tunings
2
The Euler Space and Tunings
De harmoniae veris principiis per speculum musicum repraesentatis (1773) p.350 Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae (1739)
3
frequency for c below middle c (132 Hz)
f = f0.2o.3q.5t o, q, t rationals, i.e. fraction numbers p/r of integers, e.g. 3/4, -2/5 pitch(f) ~ log(f) = log(f0) + o.log(2) + q.log(3) +t.log(5) ~ o.log(2) + q.log(3) +t.log(5) o, q, t are unique for each f prime number factorization! log(5) log(3) 132 = log(2)
4
f = f0.2o/12 (o/12).log(2), o = integers (3/12).log(2)
o, q, t = 1, 0, 0
5
frequency ratios in 12-tempered tuning
1 2 3 4 5 6 7 8 9 10 11 1 21/12 1/12 100 22/12 2/12 200 23/12 3/12 300 24/12 4/12 400 25/12 5/12 500 26/12 = √2 6/12 600 27/12 7/12 700 28/12 8/12 800 29/12 9/12 900 210/12 10/12 1000 211/12 11/12 1100
6
very old: frequency ratios in Pythagorean tuning (2-, 3-based)
1 2 3 4 5 6 7 8 9 10 11 1 256/243 8 -5 90.225 9/8 -3 2 203.91 32/27 5 81/64 -6 4 407.82 4/3 -1 729/512 -9 6 611.73 3/2 128/81 7 -4 792.18 27/16 3 16/9 -2 996.09 243/128 -7
7
frequency ratios in just tuning (2-, 3-, 5-based)
1 2 3 4 5 6 7 8 9 10 11
8
frequency ratios in Pythagorean tuning (2-, 3-based)
1 2 3 4 5 6 7 8 9 10 11 1 256/243 8 -5 90.225 9/8 -3 2 203.91 32/27 5 81/64 -6 4 407.82 4/3 -1 729/512 -9 6 611.73 3/2 128/81 7 -4 792.18 27/16 3 16/9 -2 996.09 243/128 -7
9
log(2) log(3) log(5) Euler space
10
Gioseffo Zarlino (1517 - 1590): major and minor
pitch classes in just tuning 180o Gioseffo Zarlino ( ): major and minor
11
a?
12
mean-tone tempered scale
f g a b c’ f g a b a d g = 5/4 5/4 5/4 c ➡ d ➡ e → f ➡ g ➡ a ➡ b → c’
13
frequency ratios in mean-tone tempered scale
1 2 3 4 5 6 7 8 9 10 11 1 21/12 1/12 100 √5/2 -1 1/2 23/12 3/12 5/4 -2 5/4 x 8/55/4 -1/4 26/12 = √2 6/12 51/4 1/4 28/12 8/12 53/4/2 3/4 210/12 10/12 55/4/4
14
b♭ b♭ pitch classes in just tuning 12 fifths – 7 octaves = fifth comma
= Pythagorean comma = Ct 1 third (+2 octaves) – 4 fifths = third comma = syntonic comma = Ct b♭
15
calculating and hearing commata
pitch(f) = 1200/log(2) × log(f) + const. [Ct], Take log-basis = 2: pitch(f) = 1200 × log2(f) + const. [Ct] pitch(f/g) = 1200 × log2(f/g) [Ct] f/g = 2pitch(f/g)/1200 [Hz] fifth comma, Pythagorean comma 12 fifths – 7 octaves ~ (3/2)12 × (2/1)-7 = Ct 223.46/1200 = 440 Hz ⇒ Hz third comma, syntonic comma 1 third (+2 octaves) – 4 fifths ~ 5/4 × (2/1)2 × (3/2)-4 = Ct / = 440 Hz ⇒ Hz
17
pitch classes in 12-tempered tuning
6 1 2 3 4 5 7 8 9 10 11 c g
18
0 <—> 2 3 <—> 5 4 <—> 10 7 <—> 1 8 <—> 6
consonances <—> dissonances! 7 8 4 3 9 6 1 2 3 4 5 7 8 9 10 11 0 <—> 2 3 <—> 5 4 <—> 10 7 <—> 1 8 <—> 6 9 <—> 11 d = 5 ⨉ c + 2
19
Ÿ12 Ÿ pitch classes in 12-tempered tuning d = 5 x k +2 unique formula
6 1 2 3 4 5 7 8 9 10 11 c g Ÿ12 Ÿ d = 5 x k +2 unique formula that exchanges consonances and dissonances of counterpoint!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.