Presentation is loading. Please wait.

Presentation is loading. Please wait.

Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof

Similar presentations


Presentation on theme: "Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof"— Presentation transcript:

1 Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof
Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof.dr.ir. Marcel Breeuwer Convolution

2 Contents Spatial filtering Correlation Convolution Filters:
Smoothing filters Sharpening filters Borders Basis beeldverwerking 8D040

3 Spatial filtering Input image , use a filter to obtain processed image
Filter consists of Neighbourhood (rectangular) Mostly odd dimensions Predefined operation Create new pixel value in center of neighbourhood Basis beeldverwerking 8D040

4 Spatial filtering Filter operation (3x3 filter)
More compact notation filter Basis beeldverwerking 8D040

5 Intuition to filtering
Basis beeldverwerking 8D040

6 Move filter over image Basis beeldverwerking 8D040

7 Basis beeldverwerking 8D040

8 Basis beeldverwerking 8D040

9 Basis beeldverwerking 8D040

10 Basis beeldverwerking 8D040

11 Correlation While moving the filter, at each position
Multiply values of overlapping locations Sum all multiplication results Basis beeldverwerking 8D040

12 Correlation vs. Convolution
Discrete Correlation 2D Discrete Convolution 2D - Equivalent to first rotate the filter 180 degrees and correlate- Basis beeldverwerking 8D040

13 Example See blackboard ☺ (or figure 3.30 Gonzalez and Woods)
Basis beeldverwerking 8D040

14 Correlation vs. Convolution
Correlation and convolution give the same result if the filter used is symmetric! Basis beeldverwerking 8D040

15 Convolution – 1D cont. case
Imagine a system with input signal transfer function output signal then Basis beeldverwerking 8D040

16 system transfer function
Definition input output system transfer function Basis beeldverwerking 8D040

17 Dirac delta function (unit impulse)
Definition Constraint Sifting property Specifically for t=0 Basis beeldverwerking 8D040

18 Convolution Let We saw this already in the discrete case
Basis beeldverwerking 8D040

19 Properties of convolution
Commutative Associative Distributive Basis beeldverwerking 8D040

20 Convolution is commutative
Proof Let Q.E.D. Basis beeldverwerking 8D040

21 Convolution is associative - 1
Proof Basis beeldverwerking 8D040

22 Convolution is associative - 2
Basis beeldverwerking 8D040

23 Convolution is associative - 3
Let Basis beeldverwerking 8D040

24 Convolution is associative - 4
Q.E.D. Basis beeldverwerking 8D040

25 Convolution is distributive - 1
Proof Basis beeldverwerking 8D040

26 Convolution is distributive - 2
Q.E.D. Basis beeldverwerking 8D040

27 Discrete convolution 1D 2D Basis beeldverwerking 8D040

28 Discrete convolution Formulas take summation from to
Filters have a limited size, e.g., 1D a + 1 2D (2a + 1, 2b + 1) Basis beeldverwerking 8D040

29 Filter Kernels Kernel Basis beeldverwerking 8D040

30 Filters Idea: correlate or convolve image with different filters in order to obtain different results, i.e., processed images Basis beeldverwerking 8D040

31 Smoothing filters Average intensities – result is blurred image, less details Response: (z’s image intensities) … NxN filter Basis beeldverwerking 8D040

32 Smoothing filters Note that:
Sum of filter coefficients is 1 (normalized filter) Correlation = convolution (symmetric filter) Filter size effect? Basis beeldverwerking 8D040

33 Smoothing filters - example
Original x3 smoothing filter NxN filter (see figure 3.33 in Gonzalez and Woods!) Basis beeldverwerking 8D040

34 Effect of normalized smoothing kernel
non- normalized Basis beeldverwerking 8D040

35 Sharpening filters Enhance parts of the image where intensities change
rapidly, such as edges Basic derivative filters Measure change of intensity in x or y direction Basis beeldverwerking 8D040

36 Example Basis beeldverwerking 8D040

37 Arbitrary angle derivative
Given and Basis beeldverwerking 8D040

38 Arbitrary angle derivative
Basis beeldverwerking 8D040

39 Prewitt gradient kernel
Derivative in one direction, smoothing in the perpendicular direction Basis beeldverwerking 8D040

40 Example Prewitt Basic derivative Basis beeldverwerking 8D040

41 Sobel kernel Basis beeldverwerking 8D040

42 Example (Thanks to Wikipedia☺)

43 Derivative filters Note that coefficients in all of the previous filters sum to zero, i.e., zero response in area of constant intensity Also: gradient, Laplacian, … Basis beeldverwerking 8D040

44 Borders Do you see any problems at image borders? Try position (0,0)
Basis beeldverwerking 8D040

45 Border problems How to handle? No border handling Padding
Border is not filtered Padding Put values outside image border Cyclic padding Use values from the other side of the image Basis beeldverwerking 8D040

46 Zero padding Basis beeldverwerking 8D040

47 Cyclic padding Basis beeldverwerking 8D040

48 Padding Remember: padding is artificial!
The values chosen outside the border influence the outcome image Basis beeldverwerking 8D040

49 End of part 2 Thanks and see you Tuesday 21!
Basis beeldverwerking 8D040


Download ppt "Basis beeldverwerking (8D040) dr. Andrea Fuster dr. Anna Vilanova Prof"

Similar presentations


Ads by Google