Download presentation
Presentation is loading. Please wait.
Published bySybil McDowell Modified over 6 years ago
1
Algebra 1 Notes: Lesson 1-5: The Distributive Property
2
Vocabulary Closure Property
3
Vocabulary Closure Property If you combine any two elements of a set and the result is also included in the set, then the set is closed. Distributive Property
4
Vocabulary Closure Property If you combine any two elements of a set and the result is also included in the set, then the set is closed. Distributive Property a(b + c) = ab + ac (b + c)a = ba + ca a(b – c) = ab – ac (b – c)a = ba – ca
5
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) =
6
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) =
7
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) = 8(10)
8
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) = 8(10) +
9
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) = 8(10) + 8(4)
10
Example 1 Rewrite 8(10 + 4) using the Distributive Property. Then evaluate. 8(10 + 4) = 8(10) + 8(4) = = 112
11
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 =
12
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 =
13
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 = 126
14
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 = 126 –
15
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 = 126 – 36
16
Example 2 Rewrite (12 – 3)6 using the Distributive Property. Then evaluate. (12 – 3)6 = 126 – 36 = 72 – 18 = 54
17
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) =
18
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) =
19
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2)
20
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) +
21
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x)
22
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) –
23
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1)
24
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2
25
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2 +
26
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2 + 12x
27
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2 + 12x –
28
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2 + 12x – 3
29
Example 3 Rewrite 3(2x2 + 4x – 1) using the Distributive Property. Then evaluate. 3(2x2 + 4x – 1) = (3)(2x2) + (3)(4x) – (3)(1) = 6x2 + 12x – 3
30
Vocabulary Term
31
Vocabulary Term y, p3, 4a, 5g2h Separated by + or - Like Terms
32
Vocabulary Term y, p3, 4a, 5g2h Like Terms 3a2 and 5a2
Have EXACT same variables Coefficient
33
Vocabulary Term y, p3, 4a, 5g2h Like Terms 3a2 and 5a2
Coefficient numbers multiplied by the variable(s)
34
Vocabulary Term y, p3, 4a, 5g2h Like Terms 3a2 and 5a2
Coefficient xy, m
35
Vocabulary Term y, p3, 4a, 5g2h Like Terms 3a2 and 5a2
Coefficient xy, 1m
36
Example 4 Simplify each expression. 15x + 18x
37
Example 4 Simplify each expression. 15x + 18x
38
Example 4 Simplify each expression. a) 15x + 18x 33x
39
Example 4 Simplify each expression. a) 15x + 18x 33x
40
Example 4 Simplify each expression. 15x + 18x 33x b) 10n + 3n2 + 9n2
41
Example 4 Simplify each expression. 15x + 18x 33x b) 10n + 3n2 + 9n2
42
Example 4 Simplify each expression. 15x + 18x 33x b) 10n + 3n2 + 9n2
43
Example 4 Simplify each expression. 15x + 18x 33x b) 10n + 3n2 + 9n2
44
Example 4 Simplify each expression. 15x + 18x 33x b) 10n + 3n2 + 9n2
45
Let’s Use the Distributive Property
15 99
46
Use Distributive Property
15 ( 100 – 1 )
47
Use Distributive Property
15 ( 100 – 1 ) 15 100 – 15 1
48
Use Distributive Property
15 ( 100 – 1 ) 15 100 – 15 1 1,500 – 15
49
Use Distributive Property
15 ( 100 – 1 ) 15 100 – 15 1 1,500 – 15 1,485
50
Assignments Pgs Evens, Evens
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.