Download presentation
Presentation is loading. Please wait.
Published bySibyl Shields Modified over 6 years ago
1
CE 40763 Digital Signal Processing Fall 1992 Discrete-time Fourier Transform
Hossein Sameti Department of Computer Engineering Sharif University of Technology
2
Motivation: Eigen vector of matrix A:
In other words, once matrix A is multiplied by vector X, the direction of X is preserved. Eigen function of a system: αФ(n) Ф(n) System - Subscript a denotes an analog signal. Hossein Sameti, CE, SUT, Fall 1992
3
Motivation: x(n) y(n) LTI System Frequency response
- Subscript a denotes an analog signal. magnifies the input based on freq ω. Clarification: Some textbooks use instead of Hossein Sameti, CE, SUT, Fall 1992
4
Periodicity of Frequency Response
1 Frequency response is periodic with the period of 2π. Implication? Hossein Sameti, CE, SUT, Fall 1992
5
Low/high Frequencies in Discrete-time domain
Hossein Sameti, CE, SUT, Fall 1992
6
Convergence of the Frequency Response
The same condition as the stability condition Hossein Sameti, CE, SUT, Fall 1992
7
Discrete-Time Fourier Transform
Same mathematical representation as the freq. response Existence of DTFT: x(n) is absolutely summable. Inverse DTFT: Fourier analysis considers signals to be constructed from a sum of complex exponentials with appropriate frequencies, amplitudes and phase. Frequency components are the complex exponentials which, when added together, make up the signal. Hossein Sameti, CE, SUT, Fall 1992
8
Example of calculating IDTFT
IDTFT of the ideal low-pass filter: Hossein Sameti, CE, SUT, Fall 1992
9
Example of calculating IDTFT
sin( 𝜔 𝑐 𝑛) 𝑛 ⟺𝑋 𝜔 = 1, |𝜔|≤ 𝜔 𝑐 0, 𝜔 𝑐 < 𝜔 ≤𝜋 Hossein Sameti, CE, SUT, Fall 1992
10
Real and Imaginary parts of DTFT
What happens if a>1? Hossein Sameti, CE, SUT, Fall 1992
11
Magnitude and Angle of DTFT
Hossein Sameti, CE, SUT, Fall 1992
12
DTFT Pairs Hossein Sameti, CE, SUT, Fall 1992
13
DTFT Pairs Hossein Sameti, CE, SUT, Fall 1992
14
Properties of DTFT Linearity: Time-shifting: Time-reversal:
Convolution : x(n) y(n) LTI System h(n) Hossein Sameti, CE, SUT, Fall 1992
15
Properties of DTFT Cross-correlation: Frequency Shifting:
Parseval’s Theorem: Hossein Sameti, CE, SUT, Fall 1992
16
Properties of DTFT Modulation: Multiplication:
Differentiation in the freq. domain: Conjugation: Hossein Sameti, CE, SUT, Fall 1992
17
Symmetry Properties of DTFT
Conjugate Symmetric: Conjugate Anti-Symmetric: Why are these properties important? Conjugate Symmetric Conjugate Anti-symmetric Hossein Sameti, CE, SUT, Fall 1992
18
Symmetry Properties of DTFT
Hossein Sameti, CE, SUT, Fall 1992
19
Symmetry Properties of DTFT
: real If a sequence is real, then its DTFT is conjugate symmetric. Hossein Sameti, CE, SUT, Fall 1992
20
Symmetry Properties of DTFT
: real : real : real : real : real Hossein Sameti, CE, SUT, Fall 1992
21
Symmetry Properties of DTFT
Proakis, et.al Hossein Sameti, CE, SUT, Fall 1992
22
Example: Determining an inverse fourier transform 22
Hossein Sameti, CE, SUT, Fall 1992
23
Example: Determining the Impulse response from the frequency response
Hossein Sameti, CE, SUT, Fall 1992 23
24
Example: Determining the Impulse response for a Difference Equation
To find the impulse response h[n], we set Applying the DTFT to both sides of equation. We obtain 24 Hossein Sameti, CE, SUT, Fall 1992
25
Example: Hossein Sameti, CE, SUT, Fall 1992
26
Summary Reviewed Discrete-time Fourier Transform, some of its properties and FT pairs Next: the Z-transform Hossein Sameti, CE, SUT, Fall 1992
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.