Presentation is loading. Please wait.

Presentation is loading. Please wait.

Modern Control Systems (MCS)

Similar presentations


Presentation on theme: "Modern Control Systems (MCS)"โ€” Presentation transcript:

1 Modern Control Systems (MCS)
Lecture-23-24 Time Response Discrete Time Control Systems Steady State Errors Dr. Imtiaz Hussain Assistant Professor URL :

2 Lecture Outline Introduction Time Response of DT System
Examples Final Value Theorem Steady State Errors

3 Introduction The time response of a discrete-time linear system is the solution of the difference equation governing the system. For the linear time-invariant (LTI) case, the response due to the initial conditions and the response due to the input can be obtained separately and then added to obtain the overall response of the system. The response due to the input, or the forced response, is the convolution summation of its input and its response to a unit impulse.

4 Example-1 Given the discrete-time system
Find the impulse response of the system. Taking z-transform ๐‘ฆ ๐‘˜+1 โˆ’0.5๐‘ฆ ๐‘˜ =๐‘ข ๐‘˜ Solution ๐‘ง๐‘Œ ๐‘ง โˆ’0.5๐‘Œ ๐‘ง =๐‘ˆ ๐‘ง ๐‘Œ(๐‘ง) ๐‘ˆ(๐‘ง) = 1 ๐‘งโˆ’0.5

5 Example-1 Since U(z)=1 Taking Inverse z-Transform ๐‘Œ(๐‘ง)= 1 ๐‘งโˆ’0.5
๐‘ฆ ๐‘˜ = (0.5) ๐‘˜โˆ’1 , ๐‘˜โ‰ฅ0

6 Example-2 Given the discrete time system
find the system transfer function and its response to a sampled unit step. The transfer function corresponding to the difference equation is ๐‘ฆ ๐‘˜+1 โˆ’๐‘ฆ ๐‘˜ =๐‘ข ๐‘˜+1 Solution ๐‘ง๐‘Œ ๐‘ง โˆ’๐‘Œ ๐‘ง =๐‘ง๐‘ˆ ๐‘ง ๐‘Œ(๐‘ง) ๐‘ˆ(๐‘ง) = ๐‘ง ๐‘งโˆ’๐‘ง

7 Example-2 Since U z = ๐‘ง ๐‘งโˆ’1 ๐‘ฆ ๐‘˜ =๐‘˜+1, ๐‘˜โ‰ฅ0 ๐‘Œ(๐‘ง)= ๐‘ง ๐‘งโˆ’1 ๐‘ˆ(๐‘ง)
Taking Inverse z-Transform (time advance Property) ๐‘Œ(๐‘ง)= ๐‘ง ๐‘งโˆ’1 ๐‘ˆ(๐‘ง) ๐‘Œ(๐‘ง)= ๐‘ง ๐‘งโˆ’1 ร— ๐‘ง ๐‘งโˆ’1 ๐‘Œ(๐‘ง)=๐‘ง ๐‘ง (๐‘งโˆ’1) 2 ๐‘ฆ ๐‘˜ =๐‘˜+1, ๐‘˜โ‰ฅ0

8 Home Work Find the impulse, step and ramp response functions for the systems governed by the following difference equations. ๐‘ฆ ๐‘˜+1 โˆ’0.5๐‘ฆ ๐‘˜ =๐‘ข ๐‘˜ ๐‘ฆ ๐‘˜+2 โˆ’.01๐‘ฆ ๐‘˜ ๐‘ฆ ๐‘˜ =๐‘ข(๐‘˜)

9 Final Value Theorem The final value theorem allows us to calculate the limit of a sequence as k tends to infinity, if one exists, from the z-transform of the sequence. If one is only interested in the final value of the sequence, this constitutes a significant short cut. The main pitfall of the theorem is that there are important cases where the limit does not exist. The two main case are An unbounded sequence An oscillatory sequence

10 Final Value Theorem If a sequence approaches a constant limit as k tends to infinity, then the limit is given by ๐‘“ โˆž = lim ๐‘˜โ†’โˆž ๐‘“ ๐‘˜ ๐‘“ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐น ๐‘ง ๐‘“ โˆž = lim ๐‘งโ†’1 (๐‘งโˆ’1)๐น ๐‘ง

11 Example-3 Verify the final value theorem using the z-transform of a decaying exponential sequence and its limit as k tends to infinity. The z-transform of an exponential sequence is Applying final value theorem Solution ๐น ๐‘ง = ๐‘ง ๐‘งโˆ’ ๐‘’ โˆ’๐‘Ž๐‘‡ ๐‘“ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐น ๐‘ง = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐‘ง ๐‘งโˆ’ ๐‘’ โˆ’๐‘Ž๐‘‡ ๐‘“ โˆž =0

12 Example-4 Obtain the final value for the sequence whose z-transform is
Applying final value theorem ๐น ๐‘ง = ๐‘ง 2 (๐‘งโˆ’๐‘Ž) (๐‘งโˆ’1)(๐‘งโˆ’๐‘)(๐‘งโˆ’๐‘) Solution ๐‘“ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐‘ง 2 (๐‘งโˆ’๐‘Ž) (๐‘งโˆ’1)(๐‘งโˆ’๐‘)(๐‘งโˆ’๐‘) ๐‘“ โˆž = 1โˆ’๐‘Ž (1โˆ’๐‘)(1โˆ’๐‘)

13 Home work Find the final value of following z-transform functions if it exists. ๐น(๐‘ง)= ๐‘ง ๐‘ง 2 โˆ’1.2๐‘ง+0.2 ๐น(๐‘ง)= ๐‘ง ๐‘ง 2 โˆ’0.3๐‘ง+2

14 Steady State Error Consider the unity feedback block diagram shown in following figure. The error ratio can be calculated as Applying the final value theorem yields the steady-state error. ๐ธ(๐‘ง) ๐‘…(๐‘ง) = 1 1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐‘’ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐ธ ๐‘ง

15 Steady state Error As with analog systems, an error constant is associated with each input (e.g., Position Error constant and Velocity Error Constant) Type number can be defined for any system from which the nature of the error constant can be inferred. The type number of the system is the number of unity poles in the system z-transfer function.

16 Position Error Constant ๐พ ๐‘
Error of the system is given as Where Therefore, the steady state error due to step input is given as ๐ธ(๐‘ง)= ๐‘…(๐‘ง) 1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐‘… ๐‘ง = ๐‘ง ๐‘งโˆ’1 ๐‘’ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐‘ง ๐‘งโˆ’1 ๐‘’ โˆž = lim ๐‘งโ†’ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง)

17 Position Error Constant ๐พ ๐‘
Position error constant ๐พ ๐‘ is given as Steady state error can be calculated as ๐‘’ โˆž = lim ๐‘งโ†’ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐‘’ โˆž = 1 1+ ๐พ ๐‘

18 Velocity Error Constant ๐พ ๐‘ฃ
Error of the system is given as Where Therefore, the steady state error due to step input is given as ๐ธ(๐‘ง)= ๐‘…(๐‘ง) 1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐‘… ๐‘ง = ๐œ๐‘ง ๐‘งโˆ’1 2 ๐‘’ โˆž = lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐‘ง ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐œ๐‘ง ๐‘งโˆ’1 2 ๐‘’ โˆž = lim ๐‘งโ†’1 ๐œ ๐‘งโˆ’1 [1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ]

19 Velocity Error Constant ๐พ ๐‘ฃ
๐พ ๐‘ฃ is given as Steady state error due to sampled ramp input is given as ๐‘’ โˆž = lim ๐‘งโ†’1 ๐œ ๐‘งโˆ’1 [1+ ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ] ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐‘’ โˆž = 1 ๐พ ๐‘ฃ

20 Example-5 Find the steady-state position error for the digital position control system with unity feedback and with the transfer functions For a sampled unit step input. For a sampled unit ramp input ๐พ ๐‘ and ๐พ ๐‘ฃ are given as ๐บ ๐‘๐ด๐‘† ๐‘ง = ๐พ(๐‘ง+๐‘Ž) (๐‘งโˆ’1)(๐‘งโˆ’๐‘) ๐ถ ๐‘ง = ๐พ ๐‘ (๐‘งโˆ’๐‘) ๐‘งโˆ’๐‘ ,0<๐‘Ž,๐‘,๐‘<1 Solution ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง)

21 Example-5 ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง)
๐พ ๐‘ can be further evaluated as Corresponding steady state error is ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐พ ๐‘ = lim ๐‘งโ†’1 ๐พ(๐‘ง+๐‘Ž) (๐‘งโˆ’1)(๐‘งโˆ’๐‘) ๐พ ๐‘ (๐‘งโˆ’๐‘) ๐‘งโˆ’๐‘ ๐พ ๐‘ = ๐พ(1+๐‘Ž) (1โˆ’1)(1โˆ’๐‘) ๐พ ๐‘ (1โˆ’๐‘) 1โˆ’๐‘ =โˆž ๐‘’ โˆž = 1 1+ ๐พ ๐‘ =0

22 Example-5 ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง)
๐พ ๐‘ฃ is evaluated as Corresponding steady state error is ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ ๐‘ง ๐พ ๐‘ = lim ๐‘งโ†’1 ๐บ ๐‘๐ด๐‘† ๐‘ง ๐บ(๐‘ง) ๐พ ๐‘ฃ = 1 ๐œ lim ๐‘งโ†’1 ๐‘งโˆ’1 ๐พ(๐‘ง+๐‘Ž) (๐‘งโˆ’1)(๐‘งโˆ’๐‘) ๐พ ๐‘ (๐‘งโˆ’๐‘) ๐‘งโˆ’๐‘ ๐พ ๐‘ฃ = 1 ๐œ ๐พ(1+๐‘Ž) (1โˆ’๐‘) ๐พ ๐‘ (1โˆ’๐‘) 1โˆ’๐‘ = ๐พ ๐พ ๐‘ (1+๐‘Ž) ๐œ(1โˆ’๐‘) ๐‘’ โˆž = 1 ๐พ ๐‘ฃ = ๐œ(1โˆ’๐‘) ๐พ ๐พ ๐‘ (1+๐‘Ž)

23 End of Lectures-23-24 To download this lecture visit
End of Lectures-23-24


Download ppt "Modern Control Systems (MCS)"

Similar presentations


Ads by Google