Download presentation
Presentation is loading. Please wait.
Published byReynard Reeves Modified over 6 years ago
1
The SHA Family of Hash Functions: Recent Results
Christian Rechberger and Vincent Rijmen SPI 2007, Brno
2
Motivation
3
Motivation How ? x x x x x x x x
4
Agenda The MD4 and SHA family Basic attack on SHA
Advanced methods for fast collision search (example SHA-1) SHA-2? Conclusions
5
Outline of MD4-style Hash Functions
6
Message Expansions in the MD4 family
MD4/5, RIPEMD SHA / SHA-1 SHA-2 members
7
Outline of MD4-style Hash Functions
8
Evolution of the State Updates in the MD4 Family
SHA/SHA-1 SHA-2 members Design Complexity
9
How to produce a collision?
o1=SHA(M1) o2=SHA(M2) Goal: Find any M1 and M2 such that o1 = o2
10
Propagation of a small difference
Flip a bit in m0 Message Expansion
11
Propagation of a small difference
- 1 B C D E + f << 5 >> 2 DW D AN Step N Flipping a bit Die Notation 2^j wird hier verwendet um eine Differenz in der Bitposition j zu beschreiben. J kann Werte zwischen 0 und 31 annehmen. Flip a bit
12
Propagation of a small difference
13
Propagation of a small difference
14
Propagation of a small difference
15
Propagation of a small difference
Das ist der Zwischenstand nach nur ein paar Schritten. Nun kann man sich ungefähr vorstellen was passiert, wenn man das ganze Spiel über 80 Runden betreibt. Und das ist nun genau eine Eigenschaft die von einer Hash funktion erwartet wird. Selbst bei kleinsten Änderungen des Eingangs (hier haben wir nur ein einziges Bit geändert) ändert sich der Ausgangswert komplett.
16
Perturbation Step N ∆ E D C B A + << 5 ∆ K = + + f W = 2 +
- 1 N - 1 N - 1 N - 1 N - 1 + << 5 ∆ K = + + f ∆ W = 2 j N + >> 2 E E D D C C B B ∆ A A = 2 j N + N 1 N + N 1 N + N 1 N + N 1 N N + 1
17
Correction 1
18
Correction 2
19
Correction 3
20
Correction 4
21
Correction 5
22
Outline of SHA – Message Expansion
If too much time: illustrate the ME better
23
Building a collision for SHA
Perturbation pattern Low weight Last 5 words are zero
24
A collision-producing difference pattern
Apply 5 corrections with the same pattern displaced over steps rotated over bit positions That was one correction Note that all these corrections follow the Message Expansion Rule as well.
25
A collision-producing expanded-message difference pattern
Completed difference pattern consisting of 1 perturbation pattern 5 correction patterns
26
Conditions imposed by nonlinear elements
Boolean function f Modular addition
27
Results of CJ98 Low- weight patterns exist for SHA => break
For SHA-1: weight is too high
28
Improvements Better characteristics
1-block multi-block Better suited for hash functions Better ways to construct right pairs Message modification
29
2-block attack Two related near-collisions give a 2-block collision
Work effort of two blocks is only sum of them
30
Key properties of new approach [DR06]
Generalized conditions: Looks for (parts of) the colliding pair and characteristic at the same time Type Possibilities XOR 2 Signed-bit 4-6 Generalized: 16
31
Result of Improvements
32
Problem of optimization
Message difference Enough freedom left for search? Characteristic Speed-up method
33
Problem of optimization
Message difference Enough freedom left for search? Real workfactor of attack Characteristic Speed-up method
34
Some results SHA SHA-1 1998: 261 [CJ98] 2004: 251 [BCJ+05]
2005: 239 [WYY05a] 2006: 236 [N+06] 2007: 100-fold improvement? ongoing work SHA-1 2005: 58 steps 233 [WYY05b] 2006: 64 steps 235 [DR06] 2007: 70 steps 244 [DMR06] Full SHA-1 (80 steps): ongoing work
35
Example: Collision for 64-step SHA-1
I hereby solemnly promise to finish my PhD thesis by the end of 2005 [Garbage] Same Hash I hereby solemnly promise to finish my PhD thesis by the end of 2006’ [different Garbage]
36
What about SHA-2 members?
37
Probabilities of local collisions
SHA/SHA-1: 2-2 to 2-5 SHA-2: to 2-41 Strategy: cancel differences as soon as possible with corrective differences
38
Comparing the message expansions of the SHA family
(linearized)
39
Conclusions How ? x x x x x x x x
40
x x x x x x x x 1) Special characteristics
Conclusions 1) Special characteristics 2) Clever ways of solving equations (fast) x x x x x x x x
41
Conclusions Collision for full (80-step) SHA-1 is getting closer
Optimization is ongoing 2006: * x (unpublished work, estimates) Automated techniques can exploit degrees of freedom in a more efficient way 2007: ? Improved Attacks on NMAC/HMAC? Results on (2nd-)preimage resistance? Analysis and design of new hash function proposals important
42
Hash Function Workshop
Barcelona, May 24-25, 2007 events.iaik.tugraz.at/hashworkshop07
43
The SHA Family of Hash Functions: Recent Results Q&A
Christian Rechberger and Vincent Rijmen SPI 2007, Brno
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.