Presentation is loading. Please wait.

Presentation is loading. Please wait.

Discrete-time markov chain (continuation)

Similar presentations


Presentation on theme: "Discrete-time markov chain (continuation)"โ€” Presentation transcript:

1 Discrete-time markov chain (continuation)

2 The GambleRโ€™s RUIN PROBLEM (ROSS)
Consider a gambler who at each play of the game has probability of winning one unit: ๐‘ Probability of losing one unit: 1โˆ’๐‘ Assume that successive plays of the game are independent. Assume state 0 (broke) and ๐‘>0 (goal is achieved) are absorbing states.

3 The GambleRโ€™s RUIN PROBLEM (ROSS)
Question: What is the probability that, starting with ๐‘– units, the gamblerโ€™s fortune will reach ๐‘ before reaching 0?

4 The GambleRโ€™s RUIN PROBLEM (ROSS)
Let ๐‘‹ ๐‘› be the playerโ€™s fortune at time ๐‘›. This is a Markov Chain: ๐‘‹ ๐‘› . Possible states are 0,1,2,โ€ฆ๐‘. Draw the state transition diagram.

5 The GambleRโ€™s RUIN PROBLEM (ROSS)
The transition probabilities are ๐‘ 00 = ๐‘ ๐‘๐‘ =1 ๐‘ ๐‘–,๐‘–+1 =๐‘=1โˆ’ ๐‘ ๐‘–,๐‘–โˆ’1 for ๐‘–=1,2,โ€ฆ,๐‘โˆ’1

6 The GambleRโ€™s RUIN PROBLEM (ROSS)
The states can be classified into two classes Class 1 (recurrent): {0,๐‘} After some finite time, the gambler will either attain the goal ๐‘ or go broke. Class 2 (transient): {1,2,โ€ฆ,๐‘โˆ’1}

7 The GambleRโ€™s RUIN PROBLEM (ROSS)
Working equation: ๐‘ ๐‘–,๐‘ (๐‘˜) =๐‘ ๐‘ ๐‘–+1,๐‘ (๐‘˜) +๐‘ž ๐‘ ๐‘–โˆ’1,๐‘ (๐‘˜) for ๐‘–=1,2,โ€ฆ,๐‘โˆ’1, for some ๐‘˜ Since ๐‘+๐‘ž=1, ๐‘ ๐‘ ๐‘–,๐‘ (๐‘˜) +๐‘ž ๐‘ ๐‘–,๐‘ (๐‘˜) =๐‘ ๐‘ ๐‘–+1,๐‘ (๐‘˜) +๐‘ž ๐‘ ๐‘–โˆ’1,๐‘ (๐‘˜) Rearranging the equation: ๐‘ ๐‘–+1,๐‘ (๐‘˜) โˆ’ ๐‘ ๐‘–,๐‘ ๐‘˜ = ๐‘ž ๐‘ ๐‘ ๐‘–,๐‘ (๐‘˜) โˆ’ ๐‘ ๐‘–โˆ’1,๐‘ (๐‘˜)

8 The GambleRโ€™s RUIN PROBLEM (ROSS)
๐‘ ๐‘–+1,๐‘ (๐‘˜) โˆ’ ๐‘ ๐‘–,๐‘ ๐‘˜ = ๐‘ž ๐‘ ๐‘ ๐‘–,๐‘ (๐‘˜) โˆ’ ๐‘ ๐‘–โˆ’1,๐‘ (๐‘˜) Since ๐‘ 0,๐‘ (๐‘˜) =0, ๐‘ 2,๐‘ (๐‘˜) โˆ’ ๐‘ 1,๐‘ ๐‘˜ = ๐‘ž ๐‘ ๐‘ 1,๐‘ ๐‘˜ โˆ’0 = ๐‘ž ๐‘ ๐‘ 1,๐‘ (๐‘˜) ๐‘ 3,๐‘ (๐‘˜) โˆ’ ๐‘ 2,๐‘ ๐‘˜ = ๐‘ž ๐‘ ๐‘ 2,๐‘ ๐‘˜ โˆ’ ๐‘ 1,๐‘ ๐‘˜ = ๐‘ž ๐‘ ๐‘ 1,๐‘ (๐‘˜)

9 The GambleRโ€™s RUIN PROBLEM (ROSS)
๐‘ 4,๐‘ (๐‘˜) โˆ’ ๐‘ 3,๐‘ ๐‘˜ = ๐‘ž ๐‘ ๐‘ 3,๐‘ ๐‘˜ โˆ’ ๐‘ 2,๐‘ ๐‘˜ = ๐‘ž ๐‘ ๐‘ 1,๐‘ (๐‘˜) โ‹ฎ ๐‘ ๐‘,๐‘ (๐‘˜) โˆ’ ๐‘ ๐‘โˆ’1,๐‘ ๐‘˜ = ๐‘ž ๐‘ ๐‘ ๐‘โˆ’1,๐‘ ๐‘˜ โˆ’ ๐‘ ๐‘โˆ’2,๐‘ ๐‘˜ = ๐‘ž ๐‘ ๐‘โˆ’1 ๐‘ 1,๐‘ (๐‘˜) Note: we also know that ๐‘ ๐‘,๐‘ (๐‘˜) =1.

10 The GambleRโ€™s RUIN PROBLEM (ROSS)
Adding all the equations in bullet: ๐‘ ๐‘,๐‘ (๐‘˜) โˆ’ ๐‘ 1,๐‘ ๐‘˜ = ๐‘ 1,๐‘ ๐‘˜ ๐‘ž ๐‘ + ๐‘ž ๐‘ 2 +โ€ฆ+ ๐‘ž ๐‘ ๐‘โˆ’1 1= ๐‘ 1,๐‘ ๐‘˜ 1+ ๐‘ž ๐‘ + ๐‘ž ๐‘ 2 +โ€ฆ+ ๐‘ž ๐‘ ๐‘โˆ’1 1= ๐‘ 1,๐‘ ๐‘˜ 1โˆ’ ๐‘ž ๐‘ ๐‘ 1โˆ’ ๐‘ž ๐‘ if ๐‘ž ๐‘ โ‰ 1

11 The GambleRโ€™s RUIN PROBLEM (ROSS)
Hence, ๐‘ 1,๐‘ ๐‘˜ = 1โˆ’ ๐‘ž ๐‘ 1โˆ’ ๐‘ž ๐‘ ๐‘ if ๐‘ž ๐‘ โ‰ 1

12 The GambleRโ€™s RUIN PROBLEM (ROSS)
Adding only the first ๐‘–โˆ’1 equations in bullet: ๐‘ ๐‘–,๐‘ (๐‘˜) โˆ’ ๐‘ 1,๐‘ ๐‘˜ = ๐‘ 1,๐‘ ๐‘˜ ๐‘ž ๐‘ + ๐‘ž ๐‘ 2 +โ€ฆ+ ๐‘ž ๐‘ ๐‘–โˆ’1 ๐‘ ๐‘–,๐‘ (๐‘˜) = ๐‘ 1,๐‘ ๐‘˜ 1+ ๐‘ž ๐‘ + ๐‘ž ๐‘ 2 +โ€ฆ+ ๐‘ž ๐‘ ๐‘–โˆ’1 ๐‘ ๐‘–,๐‘ (๐‘˜) = ๐‘ 1,๐‘ ๐‘˜ 1โˆ’ ๐‘ž ๐‘ ๐‘– 1โˆ’ ๐‘ž ๐‘ if ๐‘ž ๐‘ โ‰ 1

13 The GambleRโ€™s RUIN PROBLEM (ROSS)
Combining ๐‘ 1,๐‘ ๐‘˜ = 1โˆ’ ๐‘ž ๐‘ 1โˆ’ ๐‘ž ๐‘ ๐‘ if ๐‘ž ๐‘ โ‰ 1 ๐‘ ๐‘–,๐‘ (๐‘˜) = ๐‘ 1,๐‘ ๐‘˜ 1โˆ’ ๐‘ž ๐‘ ๐‘– 1โˆ’ ๐‘ž ๐‘ if ๐‘ž ๐‘ โ‰ 1

14 The GambleRโ€™s RUIN PROBLEM (ROSS)
Results in ๐‘ ๐‘–,๐‘ ๐‘˜ = 1โˆ’ ๐‘ž ๐‘ ๐‘– 1โˆ’ ๐‘ž ๐‘ ๐‘ if ๐‘ž ๐‘ โ‰ 1 Since ๐‘+๐‘ž=1 but ๐‘ž ๐‘ โ‰ 1 then ๐‘โ‰  1 2 .

15 The GambleRโ€™s RUIN PROBLEM (ROSS)
When the gambler plays continuously without end: lim ๐‘โ†’โˆž ๐‘ ๐‘–,๐‘ ๐‘˜ = lim ๐‘โ†’โˆž 1โˆ’ ๐‘ž ๐‘ ๐‘– 1โˆ’ ๐‘ž ๐‘ ๐‘ =1โˆ’ ๐‘ž ๐‘ ๐‘– if ๐‘> 1 2 lim ๐‘โ†’โˆž ๐‘ ๐‘–,๐‘ ๐‘˜ = lim ๐‘โ†’โˆž 1โˆ’ ๐‘ž ๐‘ ๐‘– 1โˆ’ ๐‘ž ๐‘ ๐‘ =0 if ๐‘< 1 2

16 The GambleRโ€™s RUIN PROBLEM (ROSS)
The case when ๐‘ž ๐‘ =1 or ๐‘= 1 2 : 1= ๐‘ 1,๐‘ ๐‘˜ 1+ ๐‘ž ๐‘ + ๐‘ž ๐‘ 2 +โ€ฆ+ ๐‘ž ๐‘ ๐‘โˆ’1 means ๐‘ 1,๐‘ ๐‘˜ = 1 ๐‘ . ๐‘ ๐‘–,๐‘ (๐‘˜) = ๐‘ 1,๐‘ ๐‘˜ 1+ ๐‘ž ๐‘ + ๐‘ž ๐‘ 2 +โ€ฆ+ ๐‘ž ๐‘ ๐‘–โˆ’1 means ๐‘ ๐‘–,๐‘ ๐‘˜ = ๐‘– ๐‘ .

17 The GambleRโ€™s RUIN PROBLEM (ROSS)
The case when ๐‘ž ๐‘ =1 or ๐‘= 1 2 : lim ๐‘โ†’โˆž ๐‘ ๐‘–,๐‘ ๐‘˜ = lim ๐‘โ†’โˆž ๐‘– ๐‘ =0.

18 The GambleRโ€™s RUIN PROBLEM (ROSS)
Therefore, when the gambler plays continuously without end: lim ๐‘โ†’โˆž ๐‘ ๐‘–,๐‘ ๐‘˜ = lim ๐‘โ†’โˆž 1โˆ’ ๐‘ž ๐‘ ๐‘– 1โˆ’ ๐‘ž ๐‘ ๐‘ =1โˆ’ ๐‘ž ๐‘ ๐‘– if ๐‘> 1 2 lim ๐‘โ†’โˆž ๐‘ ๐‘–,๐‘ ๐‘˜ = lim ๐‘โ†’โˆž 1โˆ’ ๐‘ž ๐‘ ๐‘– 1โˆ’ ๐‘ž ๐‘ ๐‘ =0 if ๐‘โ‰ค 1 2

19 The GambleRโ€™s RUIN PROBLEM (ROSS)
Therefore, when the gambler plays continuously without end: lim ๐‘โ†’โˆž ๐‘ ๐‘–,๐‘ ๐‘˜ = lim ๐‘โ†’โˆž 1โˆ’ ๐‘ž ๐‘ ๐‘– 1โˆ’ ๐‘ž ๐‘ ๐‘ =1โˆ’ ๐‘ž ๐‘ ๐‘– if ๐‘> 1 2 There is a positive probability that the gamblerโ€™s fortune will increase indefinitely if ๐‘> 1 2 .

20 The GambleRโ€™s RUIN PROBLEM (ROSS)
Therefore, when the gambler plays continuously without end: lim ๐‘โ†’โˆž ๐‘ ๐‘–,๐‘ ๐‘˜ = lim ๐‘โ†’โˆž 1โˆ’ ๐‘ž ๐‘ ๐‘– 1โˆ’ ๐‘ž ๐‘ ๐‘ =0 if ๐‘โ‰ค 1 2 The gambler will surely go broke against an infinitely rich adversary if ๐‘โ‰ค 1 2 .

21 STEADY-STATE AND PERIODICITY

22 Not all converge to steady-state
The long-run properties of a Markov chain depend greatly on the characteristics of its states and transition matrix. It may or may not converge to steady-state. Example of case not converging to steady-state: periodicity

23 CLASSES BASED ON โ€œCOMMUNICATIONโ€
CLASSES of TYPE 1: Those that do communicate Example: An irreducible Markov Chain consists of one class, which contains all states. CLASSES of TYPE 2: Those that do not communicate

24 CLASSES BASED ON โ€œCOMMUNICATIONโ€
1 CLASSES BASED ON โ€œCOMMUNICATIONโ€ State 0 .3 1 State 3 0.3 State 1 State 2 p=0.7 p=0.7

25 CLASSES BASED ON โ€œCOMMUNICATIONโ€
CLASSES of TYPE 1: CLASS 1: {1,2} CLASSES of TYPE 2: CLASS 2: {0} CLASS 3: {3}

26 CLASSES BASED ON โ€œCOMMUNICATIONโ€
THEOREMS: Recurrence is a class property. That is, all states in a class are either recurrent or transient. (We will prove this later) Periodicity is a class property. That is, if state i in a class has period t, then all states in that class have period t.

27 DEFINITION The period of state ๐‘– is defined to be the integer ๐‘ก> 1 such that ๐‘ ๐‘–๐‘– (๐‘›) =0 for all values of ๐‘› other than ๐‘ก, 2๐‘ก, 3๐‘ก,... and ๐‘ก is the smallest integer with this property. If there are two consecutive numbers ๐‘  and ๐‘ +1 such that the process can be in state ๐‘– at times ๐‘  and ๐‘ +1, the state is said to have period 1 and is called an aperiodic state.

28 DEFINITION In a finite-state Markov chain, recurrent states that are aperiodic are called ergodic states. A Markov chain is said to be ergodic if all its states are ergodic states.

29 1 EXAMPLE 1: State 0 .3 1 State 3 0.3 State 1 State 2 p=0.7 p=0.7

30 EXAMPLE 2: Periodic or not. If Periodic, what is the period
EXAMPLE 2: Periodic or not? If Periodic, what is the period? If aperiodic, is IT ergodic? 1 State 0 1 1 State 1 State 2 State 3 1

31 Example 3: Periodic or not. If Periodic, what is the period
Example 3: Periodic or not? If Periodic, what is the period? If aperiodic, is IT ergodic? 1 State 0 0.5 0.5 0.5 1 State 1 State 2 State 3 0.5

32 EXAMPLE 4: Periodic or not. If Periodic, what is the period
EXAMPLE 4: Periodic or not? If Periodic, what is the period? If aperiodic, is IT ergodic? 1 1 State R State P State S 1

33 EXAMPLE 5: Periodic or not. If Periodic, what is the period
EXAMPLE 5: Periodic or not? If Periodic, what is the period? If aperiodic, is IT ergodic? 0.5 0.5 0.5 0.5 0.5 State R State P State S 0.5

34 THEOREM on STEADY-STATE
The n-step transition probabilities of a Markov chain that is both irreducible and ergodic (all states are recurrent and aperiodic) will converge to steady-state probabilities as n grows large.

35 THEOREM on STEADY-STATE
Question: If I have a periodic state, does that mean the n-step transition probabilities of my Markov chain will NOT converge to steady-state probabilities as n grows large?

36 PROOF OF โ€œRecurrence is a class propertyโ€
Restatement: If state ๐‘– is recurrent, and state ๐‘– communicates with state ๐‘—, then state ๐‘— is recurrent. Proof. Since state ๐‘– communicates with state ๐‘—, there exist integers ๐‘˜ and ๐‘š such that ๐‘ ๐‘–๐‘— (๐‘˜) >0 and ๐‘ ๐‘—๐‘– (๐‘š) >0.

37 PROOF OF โ€œRecurrence is a class propertyโ€
For any integer ๐‘›, ๐‘ ๐‘—๐‘— (๐‘š+๐‘›+๐‘˜) โ‰ฅ ๐‘ ๐‘—๐‘– ๐‘š ๐‘ ๐‘–๐‘– ๐‘› ๐‘ ๐‘–๐‘— ๐‘˜ . Then ๐‘›=1 โˆž ๐‘ ๐‘—๐‘— (๐‘š+๐‘›+๐‘˜) โ‰ฅ ๐‘ ๐‘—๐‘– (๐‘š) ๐‘ ๐‘–๐‘— (๐‘˜) ๐‘›=1 โˆž ๐‘ ๐‘–๐‘– (๐‘›) =โˆž

38 PROOF OF โ€œRecurrence is a class propertyโ€
๐‘›=1 โˆž ๐‘ ๐‘—๐‘— (๐‘š+๐‘›+๐‘˜) =โˆž which means state ๐‘— is also recurrent.

39 RECALL: Transient state will only be visited a finite number of times
State ๐‘– is Recurrent if ๐‘›=1 โˆž ๐‘ ๐‘–๐‘– (๐‘›) =โˆž Transient if ๐‘›=1 โˆž ๐‘ ๐‘–๐‘– (๐‘›) <โˆž .


Download ppt "Discrete-time markov chain (continuation)"

Similar presentations


Ads by Google