Download presentation
Presentation is loading. Please wait.
1
Photo: R. Gjørven
2
Greywater treatment and reuse
Professor Dr. P. D. Jenssen Norwegian University of Life Sciences (UMB) Technologies that emerge from applying ecological thinking to engineering Ecological Sanitation Symposium, Damascus Syria, December
3
Source separation of wastewater
(Alsen and Jenssen2005)
4
Source separation of wastewater
(Alsen and Jenssen2005)
5
Presentation overview
Greywater production Nutrients in waste fractions Greywater composition Greywater treatment and reuse
6
Nutrients and volume of domestic wastewater fractions
(Vinnerås 2002).
7
(Jenssen et al. 2005a)
8
Greywater volumes per capita and day
(average from 18 investigations; 4 in poor and 14 in rich countries)
9
Greywater volumes per capita and day
liter liters
10
Greywater composition
(Jenssen et al. 2005a)
11
Greywater composition
(Jenssen and Vråle 2004)
12
Greywater composition
BOD/COD/SS concentrations as for combined wastewater Nutrients (nitrogen and phosphorus) substantially lower concentrations than for combined wastewater Pathogens (bacteria, viruses)
13
Total nitrogen concentrations in greywater STE (mg/l)
Average 8,4 mg/l (Jenssen and Vråle 2004)
14
Total nitrogen concentrations in greywater Norway (mg/l)
Drinking water (WHO) 10,0 mg/l Average 8,4 mg/l (Jenssen and Vråle 2004)
15
Total phosphorus concentrations in greywater Norway (mg/l)
Average 1,03 mg/l (Jenssen and Vråle 2004)
16
Greywater constituents relative concern
nitrogen phosphorus of the organic matter bacteria + virus?
17
Greywater treatment options
(Illustration: Jenssen et al. 2005)
18
Greywater treatment options
(Illustration: Jenssen et al. 2005a)
19
Package treatment - Rotating biological contactors
20
BOD reduction Bacteria reduction
21
) Phota: P.D. Jenssen
22
Membrane filtration of greywater ) Phota: P.D. Jenssen
23
Greywater treatment options
(Illustration: Jenssen et al. 2005a)
24
Ponds at Tingvall conference center- Sweden
Three ponds in series removes: BOD 90% Total P 85% Total N 74% Bacteria normally good ( )
25
Syria
26
Greywater treatment options
(Illustration: Jenssen et al. 2005a)
27
Infiltration systems Open systems - infiltration in ponds
Subsurface (buried) systems - infiltration trenches Illustrations: Jenssen and Siegrist 1991 Photos: P.D. Jenssen
28
Infiltration systems - loading rates
Open systems - infiltration in ponds cm/d Subsurface (buried) systems - infiltration trenches 1 - 5 cm/d Illustrations: Jenssen and Siegrist 1991 Photos: P.D. Jenssen
29
Loading rate assessment diagram Md/So (Meso) diagram
1,3 2,0 4,0 Mean grain size (d50) Sorting ( d60/d10) K (m/d) L.R. (cm/d) > (Jenssen & Siegrist 1991)
30
Large open infiltration system in a sand deposit
Photo: K. Robertsen
31
Large buried infiltration system in a sand deposit
Photo: K. Robertsen
32
Subsurface infiltration and sandfilter
Trench Mound Photo: P.D. Jenssen PDJ 1999 Photos: P.D. Jenssen
33
A mound system Peilerør (Jenssen and Heistad 2000) PDJ 1999
34
Syria
35
Buried infiltration systems
(Siegrist et al. 2000)
36
Buried infiltration systems
Organic matter Bacteria Virus ? (Siegrist et al. 2000)
37
Water treatment by filtration through sand
(Photo: P.D. Jenssen)
38
Infiltration systems bacteria removal
Soil surface Bacteria/100ml or 100g of soil Depth cm Infiltration trench E coli Total coli Total coli Total bacteria Cloggede zone (McCoy and Ziebell 1975) Background levels 30 cm below the trench
39
Treatment processes in natural systems
Biological Chemical Mechanical Illustration P.D. Jenssen
40
Reduction of organic matter biofilm media in activated sludge conventional systems
K1* K2* Natrix O* The Kaldnes moving bed process is a biological process where the plastic biomedia is used to ehhance the available biofilm suface in the reactors. This is achieved by the use of small plastic biomedia having a specific surface area in the range of m2/m3. d= 9 mm d= 15 mm d= 60 mm Biofilm media surface area m2/m3 *Kaldnes TM
41
Reduction of organic matter Porous media as biofilm carrier
Sand Lightweight aggregate Particle size mm Particle size 2-5mm Using a special biofilm media iFiltralite - that is developed in s developed in Norway. The biofilm area of this media is > 500m3/m3 and much largeer than any plastic biofilm media.. The result i a nother energy efficient method. I do not know which one is the most efficient this r the KMT, but both have cut energy costs and made N-removal of the cold and diluted Norwegian wastewater acceptablew. Photo: P.D. Jenssen Surface area > 5000m2/m Surface area >> 5000m2/m
42
Infiltration systems treatment efficiency
BOD > 90% Total P >90% Total N % Bacteria - very good (Photo: P.D. Jenssen)
43
Greywater treatment options
(P.D. Jenssen et al. 2005a)
44
Constructed wetland with subsurface flow
(Illustration: T. Mæhlum)
45
Constructed wetland with integrated and separate pretreatment filter
( Jenssen and Heistad 2000)
46
Constructed wetland for one dwellling with WC
(Illustration: Maxit Group)
47
The size of the horisontal subsurface flow wetland section based on 15 years of P-sorption
Domestic WW: m3/person Greywater: m3/person 7 40 m2/family (Illustration: Maxit Group)
48
Greywater - 1/4 the area of greywater +WC (Photo: P.D. Jenssen)
49
Greywater treatment Pretreatment biofilter
Pump/siphon Septic tank Level control & sampling port Horizontal subsurface flow wetland filter (Jenssen and Vråle 2004)
50
Constructed wetland at Dal primary school Norway
Photos: P.D. Jenssen Parameter Influent Effluent mg/l mg/l Total - P , ,2 Total - N , ,0 COD SS < 5 T. coli. /100ml < 2 (Jenssen et al. 2005b)
51
Agricultural use of water and nutrients from constructed wetlands
Photo: P.D. Jenssen
52
Constructed wetland flow direction/purification High quality effluent
53
Pretreatment biofilter performance
Dome with TF- nozzle BOD removal: % Complete nitrification Total-N removal 5-40% SS % Bacteria reduction: up to 5 logs 2m Grain size: mm Depth: cm Area: 0,3 - 2,0m2/person (Jenssen et al. 2005b)
55
Pretreatment biofilter
Porous media LWA Diam: 2,5 mm Surface area > 5000m2/m3 Bacteria on LWA surface
56
Pretreatment biofilter removal of virus
Bacteriophage PRD 1 adsorbed to the biofilm surface Surface area > 5000m2/m3 Monodisperse particles (1um) Ingested by micro- organism (Heistad 2005)
57
Student dormitories in Norway
Studentboliger Kaja 48 students Vacuum toilets Local greywater treatment
58
Greywater treatment student housing Norway Effluent values
Total - P ,04 mg/l Total - N ,2mg/l BOD ,9 mg/l Termotolerant coli <100 PBF (Jenssen and Vråle 2004) Wetland 48 students Wetland area: 2 m2/student Foto: P. Jenssen
59
Torvetua Norway 42 condominiums vacuumtoilets
Local greywater treatment
60
Torvetua - Local greywater treatment
Treatment results BOD <10 mg/l Phosphorus ,2 mg/l > 80 % Nitrogen: ,0 mg/l % Bacteria: swimming water quality (Jenssen and Vråle 2004)
61
Kuching Malaysia
62
Pilot project Hui Sing Garden
Greywater treatment Photo: P.D. Jenssen
63
Greywater treatment Pretreatment biofilter
Pump/siphon Septic tank Level control & sampling port Horizontal subsurface flow wetland filter (Jenssen and Vråle 2004)
64
Final discharge 1st chamber of oil Pump sump and grease trap
Photo: Y. Fevang
65
Photo: P.D. Jenssen
66
Greywater treatment - Malaysia
(Jenssen et al c) Preliminary results: BOD < 2 mg/l Total N 2.2 mg/l Total P 1.9 Faecal coliforms 50/100ml Photo: P.D. Jenssen Photo: P.D. Jenssen Photo: Y. Fevang
67
Greywater treatment in urban areas - OSLO NORWAY
Klosterenga
68
Greywater treatment in OSLO
Klosterenga oversikt Greywater treatment in OSLO 33 apartments 100 persons Area 1m2/person
69
Greywater treatment in OSLO
Klosterenga oversikt Greywater treatment in OSLO Pretreatment Biofilter (PBF) 33 apartments 100 persons Area 1m2/person
70
Greywater treatment in OSLO
Klosterenga oversikt Greywater treatment in OSLO Pretreatment Biofilter (PBF) Horisontal subsurface flow CW 33 apartments 100 persons Area 1m2/person
71
Greywater treatment Klosterenga Oslo Pretreatment biofilter: 10 domes
60 cm 2-4mm LWA Horizontal subsurface flow filter: 100 m3 FiltralitePTM 1,8 m deep (Jenssen and Vråle 2004)
72
Pretreatment biofilter (PBF) Klosterenga - under construction
73
Klosterenga Oslo Greywater treatment at Effluent values:
Termotolerant coliform bacteria: 0 Total-N: ,5 mg/l Total-P: ,02 mg/l P-sorption capacity; approx. 50 years I bakgården til miljøboligene på Klosterenga i Oslo ligger et naturbasert renseanlegg som renser gråvannet fra de 33 leilighetene i miljøboligene. Anlegget er en del av den parkmessige utformingen av bakgården. Institutt for tekniske fag har vært ansvarlige for anleggets funksjon. Landsklpsarkitetkfirmaet Grindaker har stått for estetisk utforming. Fosfor 10g/d bindingskap. 2kg/m2. (Jenssen and Vråle 2004)
74
Klosterenga Oslo Inhouse use ? Greywater treatment at Effluent values:
Fecal coliforms: Total-N: ,5 mg/l Total-P: ,02 mg/l I bakgården til miljøboligene på Klosterenga i Oslo ligger et naturbasert renseanlegg som renser gråvannet fra de 33 leilighetene i miljøboligene. Anlegget er en del av den parkmessige utformingen av bakgården. Institutt for tekniske fag har vært ansvarlige for anleggets funksjon. Landsklpsarkitetkfirmaet Grindaker har stått for estetisk utforming. Fosfor 10g/d bindingskap. 2kg/m2. (Jenssen and Vråle 2004)
75
I bakgården til miljøboligene på Klosterenga i Oslo ligger et naturbasert renseanlegg som renser gråvannet fra de 33 leilighetene i miljøboligene. Anlegget er en del av den parkmessige utformingen av bakgården. Institutt for tekniske fag har vært ansvarlige for anleggets funksjon. Landsklpsarkitetkfirmaet Grindaker har stått for estetisk utforming. Fosfor 10g/d bindingskap. 2kg/m2. Local discharge
76
I bakgården til miljøboligene på Klosterenga i Oslo ligger et naturbasert renseanlegg som renser gråvannet fra de 33 leilighetene i miljøboligene. Anlegget er en del av den parkmessige utformingen av bakgården. Institutt for tekniske fag har vært ansvarlige for anleggets funksjon. Landsklpsarkitetkfirmaet Grindaker har stått for estetisk utforming. Fosfor 10g/d bindingskap. 2kg/m2. Irrigation
77
Photos: P.D. Jenssen I bakgården til miljøboligene på Klosterenga i Oslo ligger et naturbasert renseanlegg som renser gråvannet fra de 33 leilighetene i miljøboligene. Anlegget er en del av den parkmessige utformingen av bakgården. Institutt for tekniske fag har vært ansvarlige for anleggets funksjon. Landsklpsarkitetkfirmaet Grindaker har stått for estetisk utforming. Fosfor 10g/d bindingskap. 2kg/m2. Groundwater recharge
78
Conclusions Compact reliable RBC systems are available for decentralized greywater treatment Investment and maintenance costs are high Can produce water for recycling
79
Conclusions Infiltration are well suited for greywater disposal and treatment and much experience exist Infitration systems have very low investment and operational cost Infiltration systems have excellent bacteria removal capability and recharge groundwater aquifers
80
Conclusions A simple vertical flow biofilter followed by a horizontal flow wetland filter is developed for greywater treatment The area requirement is 1-2 m2/ person which facilitates use in urban settings High quality effluent that meets swimmig water standard with respect to indicator bacteria is produced The effluent is suitable for irrigation groundwater recharge or local discharge The effluent constitute an excellent raw water for upgrading to inhouse use.
81
Thank you! Norwegian University of Life Sciences
82
Ecosan education The Norwegian University of Life Sciences
MSc programs Short courses
83
Main references Jenssen P.D., J. Heeb, K. Gnanakan and K. Conradi Ecosan Curriculum, GTZ/UNEP, in preparation. Jenssen P.D., T. Mæhlum, T. Krogstad and Lasse Vråle. 2005b. Treatment Performance of Multistage Constructed Wetlands for Wastewater Treatment in Cold Climate. Journal of Environmental Science and Health. Vol 40 (6-7) Jenssen P.D., L. Seng , B. Chong, T. H. Huang4, Y. Fevang, I. Skadberg, 2005c. An urban ecological sanitation pilot study in humid tropical climate. Proc. 3rd. International conference on ecological sanitation. Durban, South Africa pp Siegrist, R.L., Tyler, E.J., Jenssen, P.D Design and peformance of onsite wastwater soil absorption systems. Paper presented at National Research Needs Conference Risk-Based Decision Making for Onsite Wastewater Treatment, St. Louis, Missouri, May USEPA, Electic Power Research Inst. Community Env. Center, National Decentralized Water Resources Capacity Development Project. Vinnerås, B Possibilities for sustainable nutrient recycling by faecal separation combined with urine diversion. Agraria Doctoral thesis. Swedish University of Agricultural Sciences, Uppsala. Alsén K.W. and P.D. Jenssen Ecological Sanitation – for mankind and future. Information folder prepared for the UN-conference CSD-13 New York April. Heistad A Virus removal in porous media. PhD thesis under preparation. Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås Norway. Jenssen, P.D. and R.L. Siegrist Integrated loading rate determinations for wastewater infiltration systems sizing. On-site wastewater treatment. Proc. 6th Symposium on Individual and Small Community Sewage Systems Dec Chichago Illinois. ASAE Publ , pp Jenssen P.D. and A. Heistad Natuyrbasert avløpsteknologi. Kompendium. Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, 1432 Ås, Norway. Jenssen, P. D. and L. Vråle Greywater treatment in combined biofilter/constructed wetlands in cold climate In: C. Werner et al. (eds.). Ecosan – closing the loop. Proc. 2nd int. symp. ecological sanitation, Lübeck Apr , GTZ, Germany, pp:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.