Download presentation
Presentation is loading. Please wait.
8
Photosynthesis and Cellular Respiration
9
Outline I. Photosynthesis II. Cellular Respiration A. Introduction
B. Reactions II. Cellular Respiration
10
Photosynthesis Method of converting sun energy into chemical energy usable by cells Autotrophs: self feeders, organisms capable of making their own food Heterotrophs: must take in energy from outside sources, cannot make their own e.g. animals
11
Harvesting Chemical Energy
So we see how energy enters food chains (via autotrophs) we can look at how organisms use that energy to fuel their bodies. Plants and animals both use products of photosynthesis (glucose) for metabolic fuel
12
Photosynthesis Photosynthesis takes place in specialized structures inside plant cells called chloroplasts Light absorbing pigment molecules e.g. chlorophyll
13
Real image
14
Electron Microscope
15
Chloroplast by Nakia and Berto
16
Metaphoric cell model by Justin and Korey
17
Overall Reaction 6CO2 + 12 H2O + light energy → C6H12O6 + 6O2+ 6H2O
Carbohydrate made is glucose Water is split as a source of electrons from hydrogen atoms releasing O2 as a byproduct Electrons increase potential energy when moved from water to sugar therefore energy is required
18
Light-dependent Reactions
Overview: light energy is absorbed by chlorophyll molecules-this light energy excites electrons and boosts them to higher energy levels. The electrons “fall” to a lower energy state, releasing energy that is harnessed to make ATP
19
Complete now and bring to me.
Elephant book Section 6-1 Photosynthesis Q 1-4
20
Energy Shuttling Recall ATP: cellular energy-nucleotide based molecule with 3 phosphate groups bonded to it, when removing the third phosphate group, lots of energy liberated= superb molecule for shuttling energy around within cells. Other energy shuttles-coenzymes (nucleotide based molecules): move electrons and protons around within the cell NADP+, NADPH NAD+, NADP FAD, FADH2
21
Light-dependent Reactions
Photosystem: light capturing unit, contains chlorophyll, the light capturing pigment Electron transport system: sequence of electron carrier molecules that shuttle electrons, energy released to make ATP Electrons in chlorophyll must be replaced so that cycle may continue-these electrons come from water molecules, Oxygen is liberated from the light reactions Light reactions yield ATP and NADPH used to fuel the reactions of the Calvin cycle (light independent or dark reactions)
24
Calvin Cycle (light independent or “dark” reactions)
ATP and NADPH generated in light reactions used to fuel the reactions which take CO2 and break it apart, then reassemble the carbons into glucose. Called carbon fixation: taking carbon from an inorganic molecule (atmospheric CO2) and making an organic molecule out of it (glucose) Simplified version of how carbon and energy enter the food chain
26
Cellular Respiration Overview
Transformation of chemical energy in food into chemical energy cells can use: ATP These reactions proceed the same way in plants and animals. Process is called cellular respiration Overall Reaction: C6H12O6 + 6O2 → 6CO2 + 6H2O
27
Cellular Respiration Overview
Breakdown of glucose begins in the cytoplasm: the liquid matrix inside the cell At this point life diverges into two forms and two pathways Anaerobic cellular respiration (aka fermentation) Aerobic cellular respiration
28
C.R. Reactions Glycolysis
Series of reactions which break the 6-carbon glucose molecule down into two 3-carbon molecules called pyruvate Process is an ancient one-all organisms from simple bacteria to humans perform it the same way Yields 2 ATP molecules for every one glucose molecule broken down Yields 2 NADH per glucose molecule
30
Anaerobic Cellular Respiration
Some organisms thrive in environments with little or no oxygen Marshes, bogs, gut of animals, sewage treatment ponds No oxygen used= ‘an’aerobic Results in no more ATP, final steps in these pathways serve ONLY to regenerate NAD+ so it can return to pick up more electrons and hydrogens in glycolysis. End products such as ethanol and CO2 (single cell fungi (yeast) in beer/bread) or lactic acid (muscle cells)
32
Aerobic Cellular Respiration
Oxygen required=aerobic 2 more sets of reactions which occur in a specialized structure within the cell called the mitochondria 1. Kreb’s Cycle 2. Electron Transport Chain
33
Kreb’s Cycle Completes the breakdown of glucose
Takes the pyruvate (3-carbons) and breaks it down, the carbon and oxygen atoms end up in CO2 and H2O Hydrogens and electrons are stripped and loaded onto NAD+ and FAD to produce NADH and FADH2 Production of only 2 more ATP but loads up the coenzymes with H+ and electrons which move to the 3rd stage
35
Electron Transport Chain
Electron carriers loaded with electrons and protons from the Kreb’s cycle move to this chain-like a series of steps (staircase). As electrons drop down stairs, energy released to form a total of 32 ATP Oxygen waits at bottom of staircase, picks up electrons and protons and in doing so becomes water
37
Energy Tally 36 ATP for aerobic vs. 2 ATP for anaerobic
Glycolysis ATP Kreb’s ATP Electron Transport 32 ATP 36 ATP Anaerobic organisms can’t be too energetic but are important for global recycling of carbon
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.