Presentation is loading. Please wait.

Presentation is loading. Please wait.

Activities on double beta decay search at KIMS

Similar presentations


Presentation on theme: "Activities on double beta decay search at KIMS"— Presentation transcript:

1 Activities on double beta decay search at KIMS
Double beta decay search with HPGe & CsI(Tl) Metal Loaded Liquid Scintillators EC/b+, b+b+ search with 4p CsI(Tl) shielding Prospect H.J.Kim (KyungPook National Univ.) for KIMS International Workshop on Double Beta Decay Searches, 2009/10/15-17

2 0-, 2-n bb decay 2-n bb decay 2nd order beta decay Rare nuclear decay
(>1018 years) 0-n bb decay n mass>0 & Majorana particle 2) New Physics e ν N N’ 2νββ e ν N N’ 0νββ A B

3 Double beta decay process
(A,Z+1) (A,Z-1) (A,Z) (A,Z) (A,Z+2) (A,Z-2) (A,Z) -> (A,Z+2) + 2b +2n (A,Z) -> (A,Z-2) + 2b+ +2n EC+b+ ,2EC also is possible Excited state g b+ -> g g (511 keV) Ground state

4 Environment Parameters in Y2L
Gneiss (2 Gyr ) Depth Minimum 700 m Temperature 20 ~ 25 oC Humidity 35 ~ 60 % Rock contents 238U less than 0.5 ppm 232Th ppm 40K ppm Muon flux 2.7 x 10-7 /cm2/s Neutron flux 8 x10-7 /cm2/s 222Rn in air 1~2 pCi/liter

5 R&D and experiment of bb decay at KIMS
Double beta experiment and R&D (9 years) <= Developing new experimental method with affordable cost Experiment with HPGe + CsI : Sn, 64Zn limit Currently working on 0n-EC/EC resonance and EC/b+, b+b+ search with HPGe: 136Ce, 130Ba Sn-loaded liquid scintillator : 124Sn limit (new method for bb ) b+b+, EC/b+ experiment with 4p CsI(Tl) shielding -> on going with CaMoO4 (J.I.Lee’s talk) -> SrCl (J.H.So’s talk) CaMoO4 R&D: (new crystal for bb ) -> 1’st experiment soon (Tomorrow talks)

6 Why HPGe for DB search? Advantage
a) Very good energy resolution : ~1-2 keV FWHM b) It is possible to setup ultra-low background HPGe c) Well known technology Disadvantage a) Low gamma efficiency (Low Z) a) Passive method b) Only possible for excited transition or b+, EC decay Y2L a) 100% low background HPGe available b) Ultra-low background planer type was being ordered. * Method : HPGe, HPGe+ CsI(Tl), HPGe+Scintillator(DB)

7 Low background HPGe at Y2L
Shielding : 5 cm OFHC Cu + 15 cm Pb +N2 gas flowing Ultra low background measurement, Double beta decay search Normal Water Ultra pure Pure water NIMA 552(2005) 456

8 Sn-124, Sn-122 0-,2-n bb excited state transition limit
* World best limit on Sn-124 (E.Norman PLB 195,1987) Test of TBSN for a week 450cm3 HPGe, 140 hours , 1.0liter TBSN : 400g of Sn 2+ (603keV) 3.8x1018 year (4.0x1019 year) 0+ (1156) x1019 year (2 -n theory : 2.7x1021) 0+ (1326) x1019 year (2.2x1018 year) * Sn-122 EC+b+ decay ; 1.5x1018 year (6.1x1013)

9 Sn-112 EC+b+ (b+-> 2g)

10 Positve evidence by I.BIKIT et.al, App. Radio. Isot. 46, 455, 1995
Zn EC+b+ decay EC+b+ limit ( b+ -> 2 g decay) 99.7% CL Positve evidence by I.BIKIT et.al, App. Radio. Isot. 46, 455, 1995 <= 25% HPGe + NaI(Tl) with 350g Zn at surface with shielding. -> Need to confirm or disprove!

11 Zn EC+b+ decay 511keV g CsI 7.5x7.5x8 Zn 511keV g HPGe
HPGe + Zn(8x8x1cm)+CsI(Tl) crystal Our advantage: 100% of HPGe 350m underground 10cm low background lead, 10cm copper and N2 flowing Calibration by Na22 (b+ radioactive source) Efficiency calculation by Geant4; 3% Very Preliminary result with 1 week data; Coincidence cut with 2 sigma range ; 1 event 2x1020 year by 95% CL If I.BIKIT’s central value is taken, we would observe 100 events (1.1x1019 y) H.J.Kim et al., Nuclear Physics A 793 (2007) 511keV g CsI 7.5x7.5x8 Zn 511keV g HPGe

12 511keV Efficiency of Zn, Sn Zn Sn

13 Energy dist. at CsI crystal

14 Energy dist at HPGe

15 Resonance ECEC process

16 136Ce->136Ba 2392, 2400 0n ECEC resonance

17 Current limit on 136Ce b+b+, b+/EC, ECEC
Q value = 2400 keV Natural abundance = 0.185% * No excited transition has been studied !

18 Experimental method & expectation
HPGe + CeO2 powder in Marinelli beaker : days, 1.25 kg data taking HPGe + Ba(No3)2 powder in Marinelli beaker : days, 1.5 kg data taking Sensitivity : 0.002% Ce-142, 3% full peak eff, 1month => ~1018 years Expectation : 136Ce, 130Ba 1)Improved b+b+, b+/EC limit 2) Study of b+b+, b+/EC excited transition 3) First study of 0n ECEC resonance transition * CeBr3 crystal (or Cs2LiCeCl6) for 0,2n ECEC or double coincidence study later

19 Why metal loaded liquid scintillator?
Advantage a) high-Z can be loaded to LS (>50% or more) b) Fast timing response (few ns) c) Low cost of LS, Large volume is possible d) U/Th/K background for LS is low and purification is known e) Some DB elements can’t be made to Scintillator Disadvantage a) Bigger volume is necessary (C,H in LS, low density) b) Lower light output (>15% of NaI(Tl))

20 LSC test sample HV + LSC Setup VME

21 Zr2EH + LSC (50% ->Zr 3%) Nd2EH + LSC (50%->Nd 6.25%)
TetraButhyl Tin + LSC (50%->Sn 20%) TetraMethyl Tin + LSC (50%->Sn 40%)

22 Tin-loaded LSC for 0n-bb search
Double betat decay search with 124Sn Q = 2287 keV 5% of natural abundance Y2L facility can be used for the experiment

23 Tin-loaded LSC for 0n-bb search
NIMA 570 (2007) 454 1.1 liter of TLSC 33% of Sn Tl MeV g 4.3% s

24 214Bi b-decay g 214Po a-decay -> T 1/2 = 0.169ms (0.163 ms exp.) :
U-238 decay chain : mBq/kg background

25 212Bi b-decay g 212Po a-decay -> T 1/2 = 301ns (300ns exp);
Th-232 Decay chain : mBq/kg

26 0n bb search with Sn-loaded LSC
1.1 liter 33% Tin-loaded Liquid scintillator 9 Month data at Y2L inside of Pb shielding Astro. Part. Phys. 31 (2009) 412 T1/2 < 2.4x1017 yr at 90% C.L T1/2 < 2.0x1019 yr at 90% C.L 2287keV

27 Conceptual design of Metal-loaded LSC
Nd/Cd/Gd Loaded LSC Mineral oil acryl Muon veto Sn, Nd, Cd, Se, Gd orano-metal metal loaded LSC 1ton -10ton <= low background <= energy resolution? <= Enrichment(?) Is it possible to compete with others?

28 0-,2- b+b+, b+/EC experiments
2n EC/b+ , b+b+ experiment ; No observation year crystals shielding EC/b+ , b+b+ 511keV g New New method: Active method EC/b+,b+b+ crystal+ 4p shielding crystals : High efficiency, 3 signal coincidence, Discrimination of 0- and 2- process, Moderate energy resolution Typical method with HPGE: Passive method Good energy resolution, Low efficiency (<5%), No discrimination between 0- and 2- EC/b+ , b+b+

29 List of candidates Nuclide Decay channel Qββ, keV Natural abundance
Decay mode Half-life (yr) 50Cr Εβ+ 1171 4.345 0v+2v 1.8*1017 58Ni Εβ+,2E 1925 68.07 7*1020 4.0*1019 84Sr 1786.8 0.56 0v 7.3*1013 96Ru 2β+,Eβ+ 2719 5.54 3.1*1016 6.7*1016 106Cd 2β+, Eβ+ 2771 1.25 2.4*1020 3.7*1020 112Sn 1922 0.97 6.1*1013 124Xe 2β+,kβ+ 2865 0.09 4.2*1017 1.2*1018 136Ce 2400 0.185 6.9*1017 3.8*1016 78Kr 2866 0.35 2*1021 5.1*1021 92Mo 1649 14.84 1.9*1020 3.0*1018

30 0,2n EC+b+ , b+b+ Experiment at Y2L
2n EC+b+ , b+b+ ; No observation yet Interest : 1) Sr-84 : SrCl (7x1013 yr) 2) Ce-136 : CeBr3, Cs2LiCeCl6 (4x1016 yr) 3) Mo-92 : CaMoO4 (2x1020 yr) 4) Cd-106 : CdWO4 (4x1020 yr) 5) Ba-130 : BaF2 (4x1021 yr) CsI(Tl) 6cm Low background Pb (10cm) EC+b+ , b+b+ Crystal 511keV g

31 b+/EC setup with 4p CsI crystals at Y2L

32 Crystal Growing system at KNU
2 Czochalski system 2 Bridgeman system Crystals for DB SrCl2 CeBr3 Cs2LiCeCl6 etc

33 Thank you Even if our major goal is CaMoO4 based 100Mo 0-n bb,
still many small scale double beta decay experiment can be performed with existing facility and small budget , and we demonstrated some of that. Thank you

34 CaMoO4 & SrCl2 : 0n EC/b+ search
Search near 628 keV Very Preliminary limit: 3x1019 y 84Sr Search near 765 keV Very Preliminary limit: 1x1017 y Grown at KNU

35 136Ce->136Ba b+b+, b+/EC, ECEC Excited

36 U238 a-a a-b

37 Th232 a-a a-a a-a,a-b

38 CaMoO4 based 100Mo 0-n bb Ca(x)MoO4 scintillation crystal for 0-n bb search -> Active source technique (first presented at new view in particle physics in 2004) Difference from other 100Mo experiment Energy resolution 5% (3.03 MeV) Avalanche photodiode ( 4 times Q.E.) Detection efficiency : ~ 100% Pulse shape discrimination : 238U, 232Th background removal First developed 2003 (5x5x5mm3)


Download ppt "Activities on double beta decay search at KIMS"

Similar presentations


Ads by Google