Download presentation
Presentation is loading. Please wait.
1
Student Lecture on Neutrino Detectors
Basics : Neutrino Source & Interactions Survey of Detection Techniques Projects Experimentalists Theorist Henry T. Wong / 王子敬 Academia Sinica / 中央研究院 @ THU / 清華大學 November 2002
2
Nobel Prize in Physics (2002) 50% for n astrophys. :
Ray. Davis Jr. (U. Penn) : “Classic” Chlorine Expt. Masatoshi Koshiba 小柴昌俊 (U. Tokyo) : Kamiokande & SuperK Citations leave room for future prizes on n physics !!! 50% to Riccardo Giacconi, in X-Ray Astronomy
3
Neutrino History 1914: continuous b-spectra (Chadwick)
1930: postulation of neutrinos (Pauli) 1934: theory of b-decay (Fermi) calculation of s(np) (Bethe,Peierls) 1956: observartion reactor ne (Reines,Cowan) 1957: measurement of n helicity (Goldhaber) 1962: discovery of accelerator nm (BNL) 1968: observation of solar neutrinos (Davis) 1974: discovery of weak neutral currents (CERN) 1987: observation of supernova SN1987a n’s (IMB,Kamiokande) 1989: three families of light neutrinos (CERN) 1998: evidence of atmospheric neutrino oscillation (Super-Kam., …) 2000: observation of nt (Fermilab) 2001: evidence solar neutrino oscillation (SNO+SK+GALLEX ……)
4
Neutrino Sources n‘s everywhere: 300 per c.c.
Observed window n‘s everywhere: 300 per c.c. from sun, supernovae, cosmic rays, reactors, accelerators, astrophysical sources, & relic Big Bang …
5
Neutrino Physicist :
6
Cross Sections Challenges of Neutrino Experiments :
Strong Electro-magnetic Weak l(H2O) 250 light years ! BUT ….. En~ 1015 eV, L~Earth’s diameter Challenges of Neutrino Experiments : “How to Beat the Small Cross-Section?” i.e. By building Massive Detectors while keeping cost/background Low !
7
Neutrino Detection : Summary
※ keV Neutrinos: R&D: Cryogenic techniques ※ keV-MeV Neutrinos: Proven: Radiochemical Techniques (solar neutrinos with Cl, Ga) R&D : World efforts to develop counter/real time+energy methods TEXONO on Reactor Neutrinos: Crystal Scintillator, Solid-State Device ※ MeV-GeV Neutrinos: R&D: Water Cherenkov Detector, Liquid Scintillator ※ GeV-TeV Neutrinos: Proven: multi “high energy physics” detector systems ※ Astrophysical UHE Neutrinos: Projects: Water/Ice Cherenov, Radio/Sound Waves, Cosmic-Ray Showers ..
8
Radio-chemical Experiments –
extracting 30 atoms from 30 tons (1029 atoms) of target materials. e.g. GALLEX: ne+71Ga71Ge, detected by EC X-rays
9
Favorite Technique for Massive Detector: Cherenkov Radiation
Permits one Sensor to see Area of Λ2atten E. Kearns, BU
10
Super-Kamionkande ※ Water Cerenkov detector: 5k tons, viewed by 11,000+ =50 cm PMTs in 1000 m underground site in central Japan ※ Physics: solar n, atmospheric n , long baseline accelerator n, proton decays .. ※ Accidents (PMTs imploded) Nov 01, 50% PMT data again end of 02 !!!
12
SK >5 MeV e-ring from ne+e scattering
The Sun IS Burning !!
13
SK sub-GeV events from atmospheric n interactions
m-ring from nmN e-ring from neN NC events with p0 2g
14
Sudbury Neutrino Observatory (SNO)
※ Heavy Water Cerenkov detector: 1k ton, shielded by 7k ton of water viewed by 9456 PMTs located 2000 m underground in Canada. ※ Physics: Solar n …
15
Actual measurements : only detect e- (a burst of light) : deconvolute the channels
16
(also Cl, Ga, diff. E) (also SK) ( 5s effect )
17
“Reines’ Reaction” for ne Detection : ne+pe++n
detect e+ then delayed n-capture modern version : liquid scintillator (proton target) Discovery of Neutrinos , Reines 1956
18
KamLAND Long Baseline Reactor n (sensitive to 20% of world’s reactors !) ave. flight path of 160 km 1 kton liquid scintillator in old Kamiokande site probe “LMA” for solar n first results “any time” (only 5 years from approved !!!!)
19
Accelerator n (1-10 GeV) Experiments :
typical high energy physics techniques - tracking m for Q/p, calorimetry for em/had. Showers CC: nm+Nm-+X(shower) NC: nm+N nm +X(shower)
20
CHORUS NOMAD
21
Historic Bubble Chamber Neutrino Interaction Events
nm+Nm-+X(shower) nm+e-nm+e- nm e- nm m-
22
Modern “Bubble Chamber” : Liquid Argon Time Project Chamber
23
Direct Observation of nt with Nuclear Emulsion
nN Emulsion Events from nt Field of View : 100 mmX120 mm
24
Optical Cherenkov Neutrino Telescope Projects
Gaols: detect astrophys. n at eV ANTARES La-Seyne-sur-Mer, France BAIKAL Russia NEMO Catania, Italy DUMAND Hawaii (cancelled 1995) NESTOR Pylos, Greece AMANDA, South Pole, Antarctica
25
IceCube – km3 n Telescope
※ To detect high energy ( eV) n’s South Pole AMANDA IceCube
26
IceCube 1015 eV ntN event (sim.) “Double Bang Event”
AMANDA “upward-going” m event τ Decay length O(100 m) at 1015 eV ντ
27
Radio Chenrenkov Detectors :
for > 1015 eV neutrinos; target- Moon, Antartic Ice, Salt mine ……
28
En > 1015 eV : using surface of Earth as target
29
En > 1019 eV: Detection of Cherenkov/florescence light from space
30
Summary & Outlook Neutrinos are important but strange objects
history of n physics full of surprises ! Strong evidenceS of massive n’s & finite mixings Physics Beyond the Standard Model ! More experiments & projects coming up EVEN MORE EXCITEMENT ! TEXONO is also a (modest) part of it
31
How Science Makes Progresses ……….
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.