Download presentation
Presentation is loading. Please wait.
Published byAnna Burns Modified over 6 years ago
1
COMP 1942 PCA TA: Harry Chan COMP1942
2
Outline PCA Review PCA in XLMiner COMP1942
3
Review: PCA Dimension reduction Many dimensions
Correlation among dimensions 3-dimensional: (1, 2, 3), (2, 4, 7), (5, 10, 8), … 2-dimensional: (1, 3), (2, 7), (5, 8), … COMP1942
4
Using PCA in XLMiner Two ways to access PCA
“Add-ins” Tag XLMiner Data Reduction and Exploration Principal Components Analysis “XLMiner Platform” Tag Transform Principal Components Analysis COMP 1942
5
Steps Step 1: Specify the data range and variables.
Step 2: Specify the principal components and method. Step 3: Specify the output options. COMP1942
6
Step 1 Data Source Variables COMP1942
7
Step 2 Fixed # of components Use Covariance Matrix COMP1942
8
Show principal components score
Step 3 Show principal components score COMP1942
9
Example Dataset: Utilities.xls Parameters
22 public utilities in the US 8 dimensions (x1-x8) Parameters Fixed # components: 6 Use Covariance Matrix Show principal components score COMP1942
10
Results COMP1942
11
Results Transformed data COMP1942
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.