Download presentation
Presentation is loading. Please wait.
1
Sorting
2
Types of Sorting Internal Sort Main Memory External Sort Disk
E.g. Bubble sort Selection exchange Shell Sort Insertion Sort Quick Sort etc. External Sort Disk
3
Sorting Stability Repetitive records should sort properly and in same order. E.G. Employee database (Bob, Manager) (John, Worker) (Bob, Team Leader) (Mery, P.A) (Bob, Manager) (Bob, Team Leader) (John, Worker) (Mery, P.A)
4
Efficiency Compare Various Techniques with respect to Time Complexity.
Compare No. of Passes required for sorting
5
Bubble Sort
6
Sorting takes an unordered collection and makes it an ordered one.
77 42 35 12 101 5 5 12 35 42 77 101
7
"Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 77 42 35 12 101 5
8
"Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping Swap 42 77 77 42 35 12 101 5
9
"Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping Swap 35 77 42 77 35 12 101 5
10
"Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping Swap 12 77 42 35 77 12 101 5
11
"Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 42 35 12 77 101 5 No need to swap
12
"Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping Swap 5 101 42 35 12 77 101 5
13
"Bubbling Up" the Largest Element
Traverse a collection of elements Move from the front to the end “Bubble” the largest value to the end using pair-wise comparisons and swapping 101 42 35 12 77 5 Largest value correctly placed
14
bubble sort Flag=1 E=N-1 While Flag=1 Exit Flag=0 Loop: j=1 To E E=E-1
If A(j)>A(j+1) Then Swap A(j),A(j+1) Loop end j E=E-1 While End Exit Inner loop Outer loop
15
LB No, Swap isn’t built in. Procedure Swap(a, b) t isoftype Num t <- a a <- b b <- t endprocedure // Swap
16
items of Interest Notice that only the largest value is correctly placed All other values are still out of order So we need to repeat this process 101 42 35 12 77 5 Largest value correctly placed
17
Repeat “Bubble Up” How Many Times?
If we have N elements… And if each time we bubble an element, we place it in its correct location… Then we repeat the “bubble up” process N – 1 times. This guarantees we’ll correctly place all N elements.
18
“Bubbling” All the Elements
77 12 35 42 5 101 N - 1 5 42 12 35 77 101 42 5 35 12 77 101 42 35 5 12 77 101 42 35 12 5 77 101
19
Reducing the Number of Comparisons
12 35 42 77 101 5 77 12 35 42 5 101 5 42 12 35 77 101 42 5 35 12 77 101 42 35 5 12 77 101
20
Reducing the Number of Comparisons
On the Nth “bubble up”, we only need to do MAX-N comparisons. For example: This is the 4th “bubble up” MAX is 6 Thus we have 2 comparisons to do 42 5 35 12 77 101
21
Putting It All Together
22
N is … // Size of Array Arr_Type definesa Array[1
N is … // Size of Array Arr_Type definesa Array[1..N] of Num Procedure Swap(n1, n2 isoftype in/out Num) temp isoftype Num temp <- n1 n1 <- n2 n2 <- temp endprocedure // Swap
23
procedure Bubblesort(A isoftype in/out Arr_Type) to_do, index isoftype Num to_do <- N – 1 loop exitif(to_do = 0) index <- 1 exitif(index > to_do) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) endif index <- index + 1 endloop to_do <- to_do - 1 endprocedure // Bubblesort Inner loop Outer loop
24
Already Sorted Collections?
What if the collection was already sorted? What if only a few elements were out of place and after a couple of “bubble ups,” the collection was sorted? We want to be able to detect this and “stop early”! 42 35 12 5 77 101
25
Using a Boolean “Flag” We can use a boolean variable to deteriteme if any swapping occurred during the “bubble up.” If no swapping occurred, then we know that the collection is already sorted! This boolean “flag” needs to be reset after each “bubble up.”
26
did_swap isoftype Boolean did_swap <- true loop exitif ((to_do = 0) OR NOT(did_swap)) index <- 1 did_swap <- false exitif(index > to_do) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) endif index <- index + 1 endloop to_do <- to_do - 1
27
An Animated Example N 8 did_swap true to_do 7 index 98 23 45 14 6 67
33 42
28
An Animated Example N 8 did_swap false to_do 7 index 1 98 23 45 14 6
67 33 42
29
An Animated Example N 8 did_swap false to_do 7 index 1 Swap 98 23 45
14 6 67 33 42
30
An Animated Example N 8 did_swap true to_do 7 index 1 Swap 23 98 45 14
6 67 33 42
31
An Animated Example N 8 did_swap true to_do 7 index 2 23 98 45 14 6 67
33 42
32
An Animated Example N 8 did_swap true to_do 7 index 2 Swap 23 98 45 14
6 67 33 42
33
An Animated Example N 8 did_swap true to_do 7 index 2 Swap 23 45 98 14
6 67 33 42
34
An Animated Example N 8 did_swap true to_do 7 index 3 23 45 98 14 6 67
33 42
35
An Animated Example N 8 did_swap true to_do 7 index 3 Swap 23 45 98 14
6 67 33 42
36
An Animated Example N 8 did_swap true to_do 7 index 3 Swap 23 45 14 98
6 67 33 42
37
An Animated Example N 8 did_swap true to_do 7 index 4 23 45 14 98 6 67
33 42
38
An Animated Example N 8 did_swap true to_do 7 index 4 Swap 23 45 14 98
6 67 33 42
39
An Animated Example N 8 did_swap true to_do 7 index 4 Swap 23 45 14 6
98 67 33 42
40
An Animated Example N 8 did_swap true to_do 7 index 5 23 45 14 6 98 67
33 42
41
An Animated Example N 8 did_swap true to_do 7 index 5 Swap 23 45 14 6
98 67 33 42
42
An Animated Example N 8 did_swap true to_do 7 index 5 Swap 23 45 14 6
67 98 33 42
43
An Animated Example N 8 did_swap true to_do 7 index 6 23 45 14 6 67 98
33 42
44
An Animated Example N 8 did_swap true to_do 7 index 6 Swap 23 45 14 6
67 98 33 42
45
An Animated Example N 8 did_swap true to_do 7 index 6 Swap 23 45 14 6
67 33 98 42
46
An Animated Example N 8 did_swap true to_do 7 index 7 23 45 14 6 67 33
98 42
47
An Animated Example N 8 did_swap true to_do 7 index 7 Swap 23 45 14 6
67 33 98 42
48
An Animated Example N 8 did_swap true to_do 7 index 7 Swap 23 45 14 6
67 33 42 98
49
After First Pass of Outer Loop
N 8 did_swap true to_do 7 Finished first “Bubble Up” index 8 23 45 14 6 67 33 42 98
50
The Second “Bubble Up” N 8 did_swap false to_do 6 index 1 23 45 14 6
67 33 42 98
51
The Second “Bubble Up” N 8 did_swap false to_do 6 index 1 No Swap 23
45 14 6 67 33 42 98
52
The Second “Bubble Up” N 8 did_swap false to_do 6 index 2 23 45 14 6
67 33 42 98
53
The Second “Bubble Up” N 8 did_swap false to_do 6 index 2 Swap 23 45
14 6 67 33 42 98
54
The Second “Bubble Up” N 8 did_swap true to_do 6 index 2 Swap 23 14 45
67 33 42 98
55
The Second “Bubble Up” N 8 did_swap true to_do 6 index 3 23 14 45 6 67
33 42 98
56
The Second “Bubble Up” N 8 did_swap true to_do 6 index 3 Swap 23 14 45
67 33 42 98
57
The Second “Bubble Up” N 8 did_swap true to_do 6 index 3 Swap 23 14 6
45 67 33 42 98
58
The Second “Bubble Up” N 8 did_swap true to_do 6 index 4 23 14 6 45 67
33 42 98
59
The Second “Bubble Up” N 8 did_swap true to_do 6 index 4 No Swap 23 14
45 67 33 42 98
60
The Second “Bubble Up” N 8 did_swap true to_do 6 index 5 23 14 6 45 67
33 42 98
61
The Second “Bubble Up” N 8 did_swap true to_do 6 index 5 Swap 23 14 6
45 67 33 42 98
62
The Second “Bubble Up” N 8 did_swap true to_do 6 index 5 Swap 23 14 6
45 33 67 42 98
63
The Second “Bubble Up” N 8 did_swap true to_do 6 index 6 23 14 6 45 33
67 42 98
64
The Second “Bubble Up” N 8 did_swap true to_do 6 index 6 Swap 23 14 6
45 33 67 42 98
65
The Second “Bubble Up” N 8 did_swap true to_do 6 index 6 Swap 23 14 6
45 33 42 67 98
66
After Second Pass of Outer Loop
8 did_swap true to_do 6 Finished second “Bubble Up” index 7 23 14 6 45 33 42 67 98
67
The Third “Bubble Up” N 8 did_swap false to_do 5 index 1 23 14 6 45 33
42 67 98
68
The Third “Bubble Up” N 8 did_swap false to_do 5 index 1 Swap 23 14 6
45 33 42 67 98
69
The Third “Bubble Up” N 8 did_swap true to_do 5 index 1 Swap 14 23 6
45 33 42 67 98
70
The Third “Bubble Up” N 8 did_swap true to_do 5 index 2 14 23 6 45 33
42 67 98
71
The Third “Bubble Up” N 8 did_swap true to_do 5 index 2 Swap 14 23 6
45 33 42 67 98
72
The Third “Bubble Up” N 8 did_swap true to_do 5 index 2 Swap 14 6 23
45 33 42 67 98
73
The Third “Bubble Up” N 8 did_swap true to_do 5 index 3 14 6 23 45 33
42 67 98
74
The Third “Bubble Up” N 8 did_swap true to_do 5 index 3 No Swap 14 6
23 45 33 42 67 98
75
The Third “Bubble Up” N 8 did_swap true to_do 5 index 4 14 6 23 45 33
42 67 98
76
The Third “Bubble Up” N 8 did_swap true to_do 5 index 4 Swap 14 6 23
45 33 42 67 98
77
The Third “Bubble Up” N 8 did_swap true to_do 5 index 4 Swap 14 6 23
33 45 42 67 98
78
The Third “Bubble Up” N 8 did_swap true to_do 5 index 5 14 6 23 33 45
42 67 98
79
The Third “Bubble Up” N 8 did_swap true to_do 5 index 5 Swap 14 6 23
33 45 42 67 98
80
The Third “Bubble Up” N 8 did_swap true to_do 5 index 5 Swap 14 6 23
33 42 45 67 98
81
After Third Pass of Outer Loop
N 8 did_swap true to_do 5 Finished third “Bubble Up” index 6 14 6 23 33 42 45 67 98
82
The Fourth “Bubble Up” N 8 did_swap false to_do 4 index 1 14 6 23 33
42 45 67 98
83
The Fourth “Bubble Up” N 8 did_swap false to_do 4 index 1 Swap 14 6 23
33 42 45 67 98
84
The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 1 Swap 6 14 23
33 42 45 67 98
85
The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 2 6 14 23 33 42
45 67 98
86
The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 2 No Swap 6 14
23 33 42 45 67 98
87
The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 3 6 14 23 33 42
45 67 98
88
The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 3 No Swap 6 14
23 33 42 45 67 98
89
The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 4 6 14 23 33 42
45 67 98
90
The Fourth “Bubble Up” N 8 did_swap true to_do 4 index 4 No Swap 6 14
23 33 42 45 67 98
91
After Fourth Pass of Outer Loop
N 8 did_swap true to_do 4 Finished fourth “Bubble Up” index 5 6 14 23 33 42 45 67 98
92
The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 1 6 14 23 33 42
45 67 98
93
The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 1 No Swap 6 14
23 33 42 45 67 98
94
The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 2 6 14 23 33 42
45 67 98
95
The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 2 No Swap 6 14
23 33 42 45 67 98
96
The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 3 6 14 23 33 42
45 67 98
97
The Fifth “Bubble Up” N 8 did_swap false to_do 3 index 3 No Swap 6 14
23 33 42 45 67 98
98
After Fifth Pass of Outer Loop
N 8 did_swap false to_do 3 Finished fifth “Bubble Up” index 4 6 14 23 33 42 45 67 98
99
Finished “Early” N 8 did_swap false to_do 3
We didn’t do any swapping, so all of the other elements must be correctly placed. We can “skip” the last two passes of the outer loop. index 4 6 14 23 33 42 45 67 98
100
Time Complexity Best Case n Average Case n2 Worst Case n2
101
Insertion Sort
102
Insertion Sort while some elements unsorted:
Using linear search, find the location in the sorted portion where the 1st element of the unsorted portion should be inserted Move all the elements after the insertion location up one position to make space for the new element
103
the fourth iteration of this loop is shown here
Insertion Sort 45 38 60 45 60 66 45 66 79 47 13 74 36 21 94 22 57 16 29 81 the fourth iteration of this loop is shown here
104
item = 60 i j item =60 i j item = 30 i j item = 30 i j item = 20 i j item = 20 j i item = 20 i j
105
Pseudo-code Procedure_Insertion sort(a,n) start Loop: j=1 To n
item=a[j] i=j-1 while((i>=0)&& (item<a[i]) a[i+1]=a[i] i=i-1 End while loop a[i+1]=item Loop End Exit
106
Time complexity Best case: n – Linear Average Case n2
Worst case n(n+1)/2 n2 - Quadratic
107
Selection Sort
108
At start min=a[0]=40 min= 30 i j min = 20 j i min = 60 i j min = 30 i j min = 60 i j min = 40 j i min = 40 i j
109
Pseudo-code Procedure_selection sort(a,n) start Loop: i=0 To n-1
min =i; Loop: j=1 To n If a[min]>a[j] Then min=j Inner loop of j End if a[i]>a[min] then Swap(a[i],a[min]) Outer Loop of I End Exit
110
Time Complexity_ Selection
Best Case n2 Average Case n2 Worst Case n2
111
Mergesort
112
Divide and Conquer Divide and Conquer cuts the problem in half each time, but uses the result of both halves: cut the problem in half until the problem is trivial solve for both halves combine the solutions
113
Merging The key to Merge Sort is merging two sorted lists into one, such that if you have two lists X (x1x2…xm) and Y(y1y2…yn) the resulting list is Z(z1z2…zm+n) Example: L1 = { } L2 = { } merge(L1, L2) = { }………………Donald E. Knuth (page 160).
114
Merging (cont.) X: 3 10 23 54 Y: 1 5 25 75 Result:
115
Merging (cont.) X: 3 10 23 54 Y: 5 25 75 Result: 1
116
Merging (cont.) X: 10 23 54 Y: 5 25 75 Result: 1 3
117
Merging (cont.) X: 10 23 54 Y: 25 75 Result: 1 3 5
118
Merging (cont.) X: 23 54 Y: 25 75 Result: 1 3 5 10
119
Merging (cont.) X: 54 Y: 25 75 Result: 1 3 5 10 23
120
Merging (cont.) X: 54 Y: 75 Result: 1 3 5 10 23 25
121
Merging (cont.) X: Y: 75 Result: 1 3 5 10 23 25 54
122
Merging (cont.) X: Y: Result: 1 3 5 10 23 25 54 75
123
Merge sort -A divide-and-conquer algorithm:
Divide the unsorted array into 2 halves until the sub-arrays only contain one element Merge the sub-problem solutions together: Compare the sub-array’s first elements Remove the smallest element and put it into the result array Continue the process until all elements have been put into the result array
124
98 23 45 14 6 67 33 42
125
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42
126
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14
127
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23
128
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 Merge
129
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 23 Merge
130
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 23 98 Merge
131
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98
132
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 Merge
133
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 Merge
134
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 Merge
135
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 Merge
136
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 14 Merge
137
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 14 23 Merge
138
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 14 23 45 Merge
139
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 98 23 45 14 23 98 14 45 14 23 45 98 Merge
140
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 23 98 14 45 14 23 45 98
141
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 23 98 14 45 14 23 45 98
142
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 23 98 14 45 14 23 45 98 Merge
143
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 23 98 14 45 6 14 23 45 98 Merge
144
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 23 98 14 45 6 67 14 23 45 98 Merge
145
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 14 23 45 98
146
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 14 23 45 98 Merge
147
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 14 23 45 98 Merge
148
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 Merge
149
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 Merge
150
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 Merge
151
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 Merge
152
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 Merge
153
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 Merge
154
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 Merge
155
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 Merge
156
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 Merge
157
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 Merge
158
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 Merge
159
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 42 Merge
160
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 42 45 Merge
161
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 42 45 67 Merge
162
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 42 45 67 98 Merge
163
98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 98 23 45 14 6 67 33 42 23 98 14 45 6 67 33 42 14 23 45 98 6 33 42 67 6 14 23 33 42 45 67 98
164
98 23 45 14 6 67 33 42 6 14 23 33 42 45 67 98
165
Algorithm Mergesort(Passed an array) if array size > 1 Divide array in half Call Mergesort on first half. Call Mergesort on second half. Merge two halves. Merge(Passed two arrays) Compare leading element in each array Select lower and place in new array. (If one input array is empty then place remainder of other array in output array)
166
Pseudo code Mergesort(A,low,high) If (low<high)then { Mid:= (low+high)/2 //split list in 2 Mergesort(A,low,mid) //1st sublist Mergesort(A,mid+1,high) //2nd sublist Merge(A,low,mid,high) // merging of 2 list }
167
Merge(A[0…n-1], low, mid, high) k=low i=low j= mid+1 Loop: while(i<=mid &&j<=high) do if(A[i]<=A[j]) then temp[k]=A[i] increment i increment k else temp[k]=A[j] increment j while loop ends
168
//copy remaining elements of left part(sublist 1) while(i<=mid)d0
temp[k]=A[i] increment i Increment k Loop ends //copy remaining elements of right part(sublist 2) while(j<=high)do temp[k]=A[j] increment j increment k
169
Summary Divide the unsorted collection into two
Until the sub-arrays only contain one element Then merge the sub-problem solutions together Best Case, Average Case, and Worst Case = O(N logN)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.