Download presentation
Presentation is loading. Please wait.
1
2.0 TRIGONOMETRIC FUNCTIONS
TOPIC : 2.0 TRIGONOMETRIC FUNCTIONS SUBTOPIC : 2.1 Introduction to Trigonometric Functions LECTURE 1 OF 12
2
LEARNING OUTCOMES a) recognize the graphs of y = sin x, y = cos x and y = tan x b) recognize the graphs of y = a sin bx, y = a cos bx and y = a tan bx. c) understand the relationship between graphs of sin x and cos x.
3
define trigonometric ratios
understand tan θ = , sin (90o – θ) = cos θ , cos (90o – θ) = sin θ and tan (90o – θ) = cot θ Use of some special angles evaluate trigonometric functions for any angle
4
Definition Periodic Function
A function which graph consists of a basic pattern, which repeats at regular interval. The width of the basic pattern is the period of the function.
5
The value of sin , cos and tan will be repeated after one period,
the period of sin and cos is 2 rad and tan is rad. So, the sine, cosine and tangent functions are known as periodic functions
6
Graph y = sin(x)
7
Graph y = sin (x) Period : 2 Range : [ -1, 1 ] Domain :
sin(-x) = - sin(x) x -2 - 2 y=sin(x) 1 -1
8
Graph y = cos(x)
9
Graph of cos(x) is symmetry at y-axis X
Graph y = cos (x) Period : 2 Range : [ -1, 1 ] Domain : Cos (-x) = cos (x) Graph of cos(x) is symmetry at y-axis X -2 - 2 y= cos (x) 1 -1
10
Graph y = tan(x)
11
Graph y = tan (x) x y = tan (x) Period : Range : Domain :
tan(-x) = - tan (x) x y = tan (x) -1 1
12
GRAPH y = a sin bx y = a cos bx y = a tan bx.
13
y x
14
y x
15
y x
16
y x
17
Example 1 y x
18
Example 2 y x
19
Example 3 y x
20
y y x
21
Exercise Sketch the graph of the following trigonometric functions: 1) 2) 3) 4)
22
The relationship between graphs of sin x & cos x
23
Graph one full period of sin x and cos x
y Graph one full period of sin x and cos x y = -sin x 1 π 2π π/2 3π/2 x –1 y = cos x y = sin x Shift to the right sin (90o – θ) = cos θ
24
TRIGONOMETRY RATIO For any acute angle θ, there are six trigonometry ratios, each of which is define by referring to a right angle triangle containing θ. y x r y 90o - θ θ x
25
x r θ y 90o - θ From the diagram y opposite sin θ = = r hypotenuse
adjacent x cos θ = = hypotenuse r opposite y tan θ = = adjacent x
26
1 r cosec θ = = sin θ y 1 r sec θ = = x cos θ 1 x cot θ = = tan θ y
27
Complimentary Angle r 90o - θ y θ x x sin (90o-θ) = = cos θ r y sin θ
cos (90o-θ) = = r x cot θ tan (90o-θ) = = y y cot (90o-θ) = tan θ r 90o - θ y θ x x
28
Trigonometric Ratios for Special Angle
1 2 45o 1 60o 1
29
θo θ rad sin θ cos θ tan θ 0o 0 rad 1 30o 45o 1 60o 90o 1 undefined
30
Type of Angle Acute angle 0o < θ < 90o Right angle θ = 90o Obtuse Angle 90o < θ < 180o Reflex angle 180o < θ < 360o
31
Positive and Negative Angles
y A sin (-θ) = - sin θ S θ cos (-θ) = cos θ x tan (-θ) = - tan θ - θ T C
32
Basic Angle (α) All positive Sine positive II θ I θ α =180o - θ α = θ
Cosine positive Tangent positive
33
Example 1 If sin θ = and θ is acute angle, find cos θ, tan θ, cosec θ, sec θ, and cot θ Solution Hence, cot θ = cos θ = sec θ = tan θ = 5 3 cosec θ = θ 4
34
Example 2 If tan θ = and θ is in the fourth quadrant find the sec θ and cosec θ Solution Hence sec θ = θ 1 cosec θ =
35
Example 3 Evaluate the following without using calculator = - sin (210o -180o) = - sin 30o = (a) sin 210º
36
b) cos 120º = - cos (180o – 120o) = - cos 60o = c) tan 240º = tan (240o – 180o) = tan 60o =
37
= - cos ( 225o – 180o) = - cos 45o = d) cos (- 225º) e) cot (-300º) = cot 60o =
38
CONCLUSION 2. The relationship between graphs of sin x & cos x
1. The graphs of y = a sin bx y = a cos bx y = a tan bx. 2. The relationship between graphs of sin x & cos x 3. Define trigonometric ratios and understand tan θ = , sin (90o – θ) = cos θ , cos (90o – θ) = sin θ and tan (90o – θ) = cot θ 4. Use of some special angles 5. Evaluate trigonometric functions for any angle
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.