Presentation is loading. Please wait.

Presentation is loading. Please wait.

Time Value of Money Future value Present value Rates of return

Similar presentations


Presentation on theme: "Time Value of Money Future value Present value Rates of return"— Presentation transcript:

1 Time Value of Money Future value Present value Rates of return Amortization

2 Time lines show timing of cash flows.
1 2 3 i% CF0 CF1 CF2 CF3 Tick marks at ends of periods, so Time 0 is today; Time 1 is the end of Period 1; or the beginning of Period 2.

3 Time line for a $100 lump sum due at the end of Year 2.
1 2 Year i% 100

4 Time line for an ordinary annuity of $100 for 3 years.
1 2 3 i% 100 100 100

5 Time line for uneven CFs -$50 at t = 0 and $100, $75, and $50 at the end of Years 1 through 3.
1 2 3 i% -50 100 75 50

6 What’s the FV of an initial $100 after 3 years if i = 10%?
1 2 3 10% 100 FV = ? Finding FVs is compounding.

7 After 1 year: FV1 = PV + INT1 = PV + PV(i) = PV(1 + i) = $100(1.10) = $ After 2 years: FV2 = PV(1 + i)2 = $100(1.10)2 = $

8 After 3 years: FV3 = PV(1 + i)3 = $100(1.10)3 = $ In general, FVn = PV(1 + i)n.

9 Four Ways to Find FVs Solve the equation with a regular calculator. Use tables. Use a financial calculator. Use a spreadsheet.

10 Financial Calculator Solution
Financial calculators solve this equation: There are 4 variables. If 3 are known, the calculator will solve for the 4th. FVn = PV(1 + i)n.

11 Here’s the setup to find FV:
INPUTS N I/YR PV PMT FV 133.10 OUTPUT Clearing automatically sets everything to 0, but for safety enter PMT = 0. Set: P/YR = 1, END

12 What’s the PV of $100 due in 3 years if i = 10%?
Finding PVs is discounting, and it’s the reverse of compounding. 1 2 3 10% PV = ? 100

13 ( ) ( ) Solve FVn = PV(1 + i )n for PV: PV = = FVn . FVn (1 + i)n 1
1.10 3 PV = $ = $100(PVIFi,n) = $100(0.7513) = $75.13.

14 Financial Calculator Solution
N I/YR PV PMT FV -75.13 INPUTS OUTPUT Either PV or FV must be negative. Here PV = Put in $75.13 today, take out $100 after 3 years.

15 If sales grow at 20% per year, how long before sales double?
Solve for n: FVn = $1(1 + i)n; $2 = $1(1.20)n Use calculator to solve, see next slide.

16 Graphical Illustration:
INPUTS N I/YR PV PMT FV 3.8 OUTPUT Graphical Illustration: FV 2 3.8 1 Year 1 2 3 4

17 What’s the difference between an ordinary annuity and an annuity due?
1 2 3 i% PMT PMT PMT Annuity Due 1 2 3 i% PMT PMT PMT

18 What’s the FV of a 3-year ordinary annuity of $100 at 10%?
1 2 3 10% 100 100 100 110 121 FV = 331

19 Financial Calculator Solution
INPUTS 331.00 N I/YR PV PMT FV OUTPUT Have payments but no lump sum PV, so enter 0 for present value.

20 What’s the PV of this ordinary annuity?
1 2 3 10% 100 100 100 90.91 82.64 75.13 = PV

21 Have payments but no lump sum FV, so enter 0 for future value.
INPUTS N I/YR PV PMT FV OUTPUT Have payments but no lump sum FV, so enter 0 for future value.

22 Find the FV and PV if the annuity were an annuity due.
1 2 3 10% 100 100 100

23 Switch from “End” to “Begin.”
Then enter variables to find PVA3 = $ INPUTS N I/YR PV PMT FV OUTPUT Then enter PV = 0 and press FV to find FV = $

24 What is the PV of this uneven cash flow stream?
1 2 3 4 10% 100 300 300 -50 90.91 247.93 225.39 -34.15 = PV

25 Input in “CFLO” register:
Enter I = 10, then press NPV button to get NPV = $ (Here NPV = PV.)

26 What interest rate would cause $100 to grow to $125.97 in 3 years?
INPUTS N I/YR PV PMT FV OUTPUT 8%

27 The Power of Compound Interest
A 20-year old student wants to start saving for retirement. She plans to save $3 a day. Every day, she puts $3 in her drawer. At the end of the year, she invests the accumulated savings ($1,095) in an online stock account. The stock account has an expected annual return of 12%.

28 How much money by the age of 65?
1,487,261.89 INPUTS N I/YR PV PMT FV OUTPUT If she begins saving today, and sticks to her plan, she will have $1,487, by the age of 65.

29 How much would a 40-year old investor accumulate by this method?
146,000.59 INPUTS N I/YR PV PMT FV OUTPUT Waiting until 40, the investor will only have $146,000.59, which is over $1.3 million less than if saving began at 20. So it pays to get started early.

30 How much would the 40-year old investor need to save to accumulate as much as the 20-year old?
-11,154.42 INPUTS N I/YR PV PMT FV OUTPUT The 40-year old investor would have to save $11, every year, or $30.56 per day to have as much as the investor beginning at the age of 20.

31 Will the FV of a lump sum be larger or smaller if we compound more often, holding the stated I% constant? Why? LARGER! If compounding is more frequent than once a year--for example, semiannually, quarterly, or daily--interest is earned on interest more often.

32 Semiannually: FV6 = $100(1.05)6 = $134.01.
1 2 3 10% 100 133.10 Annually: FV3 = $100(1.10)3 = $ 1 2 3 1 2 3 4 5 6 5% 100 134.01 Semiannually: FV6 = $100(1.05)6 = $

33 We will deal with 3 different rates:
iNom = nominal, or stated, or quoted, rate per year. iPer = periodic rate. EAR = EFF% = effective annual rate

34 iNom is stated in contracts. Periods per year (m) must also be given.
Examples: 8%; Quarterly 8%, Daily interest (365 days)

35 Periodic rate = iPer = iNom/m, where m is number of compounding periods per year. m = 4 for quarterly, 12 for monthly, and 360 or 365 for daily compounding. Examples: 8% quarterly: iPer = 8%/4 = 2%. 8% daily (365): iPer = 8%/365 = %.

36 Effective Annual Rate (EAR = EFF%):
The annual rate that causes PV to grow to the same FV as under multi-period compounding. Example: EFF% for 10%, semiannual: FV = (1 + iNom/m)m = (1.05)2 = EFF% = 10.25% because (1.1025)1 = Any PV would grow to same FV at 10.25% annually or 10% semiannually.

37 An investment with monthly payments is different from one with quarterly payments. Must put on EFF% basis to compare rates of return. Use EFF% only for comparisons. Banks say “interest paid daily.” Same as compounded daily.

38 How do we find EFF% for a nominal rate of 10%, compounded semiannually?
(1 + ) iNom m EFF = – 1 m (1 + ) 0.10 2 = – 1.0 = (1.05)2 – 1.0 = = 10.25%. 2 Or use a financial calculator.

39 EAR = EFF% of 10% EARAnnual = 10%. EARQ = (1 + 0.10/4)4 – 1 = 10.38%.
EARM = ( /12)12 – 1 = %. EARD(365) = ( /365)365 – 1 = %.

40 Can the effective rate ever be equal to the nominal rate?
Yes, but only if annual compounding is used, i.e., if m = 1. If m > 1, EFF% will always be greater than the nominal rate.

41 When is each rate used? iNom: Written into contracts, quoted by banks and brokers. Not used in calculations or shown on time lines.

42 iPer: Used in calculations, shown on time lines. If iNom has annual compounding, then iPer = iNom/1 = iNom.

43 EAR = EFF%: Used to compare returns on investments with different payments per year. (Used for calculations if and only if dealing with annuities where payments don’t match interest compounding periods.)

44 FV of $100 after 3 years under 10% semiannual compounding? Quarterly?
mn i æ ö FV = PV ç + Nom ÷ n è ø m 2x3 0.10 æ ö FV = $100 ç 1 + ÷ 3S è ø 2 = $100(1.05)6 = $ FV3Q = $100(1.025)12 = $

45 What’s the value at the end of Year 3 of the following CF stream if the quoted interest rate is 10%, compounded semiannually? 1 2 3 4 5 6 6-mos. periods 5% 100 100 100

46 Payments occur annually, but compounding occurs each 6 months.
So we can’t use normal annuity valuation techniques.

47 1st Method: Compound Each CF
1 2 3 4 5 6 5% 100 100 100.00 110.25 121.55 331.80 FVA3 = $100(1.05)4 + $100(1.05)2 + $100 = $

48 Could you find FV with a financial calculator?
2nd Method: Treat as an Annuity Could you find FV with a financial calculator? Yes, by following these steps: a. Find the EAR for the quoted rate: EAR = ( ) – 1 = 10.25%. 0.10 2 2

49 Or, to find EAR with a calculator:
NOM% = 10. P/YR = 2. EFF% =

50 b. The cash flow stream is an annual annuity. Find kNom (annual) whose
EFF% = 10.25%. In calculator, EFF% = 10.25 P/YR = 1 NOM% = 10.25 c. INPUTS N I/YR PV PMT FV OUTPUT 331.80

51 What’s the PV of this stream?
1 2 3 5% 100 100 100 90.70 82.27 74.62 247.59

52 Amortization Construct an amortization schedule for a $1,000, 10% annual rate loan with 3 equal payments.

53 Step 1: Find the required annual payments.
1 2 3 10% -1,000 PMT PMT PMT INPUTS N I/YR PV PMT FV OUTPUT 402.11

54 Step 2: Find the interest paid in Year 1.
INTt = Beg balt (i) INT1 = $1,000(0.10) = $100. Step 3: Find repayment of principal in Year 1. Repmt = PMT – INT = $ – $100 = $

55 Step 4: Find ending balance after Year 1.
End bal = Beg bal – Repmt = $1,000 – $ = $ Repeat steps 2-4 for Years 2 and 3 to complete the amortization table.

56 Interest declines. Tax implications.
BEG PRIN END YR BAL PMT INT PMT BAL 1 $1,000 $402 $100 $302 $698 TOT 1, ,000 Interest declines. Tax implications.

57 10% on loan outstanding, which is falling.
$ 402.11 Interest 302.11 Principal Payments 1 2 3 Level payments. Interest declines because outstanding balance declines. Lender earns 10% on loan outstanding, which is falling.

58 Amortization tables are widely used--for home mortgages, auto loans, business loans, retirement plans, etc. They are very important! Financial calculators (and spreadsheets) are great for setting up amortization tables.


Download ppt "Time Value of Money Future value Present value Rates of return"

Similar presentations


Ads by Google