Download presentation
Presentation is loading. Please wait.
1
Magnet Slowcontrol Overview Mu3e DAQ system
Integration of magnet into DAQ system Interfaces
2
Traditional Slow Control
HV Temperature, pressure, … Valves 12345 Terminal Server PLC RS232 GPIB PC ??? 15° C Ethernet heater MIDAS DAQ 12: 12: 13: 14: 15: 18: 19: 19:
3
Single Slow Control System
HV Temperature, pressure, … Valves Single System to control all! heater MIDAS DAQ
4
SCS-2000 64 IOs CPLD uC board
5
SCS-2000 IO Cards EEPROM Experimental Board Debug Board 3.3V/5V
8 In/Out 24V 2A 8 Out 4 Relais 0-20mA 8 Out -10…+10V 8 Out -10…+10V 0..2.5V 0..20mA 8x24bit In 0…10nF 0…1uF 4 In Opt.-Coupler 4 Out
6
Interface nodes Some experiment hardware has own controllers → need interfaces Parallel (Centronics), RS-232 and GPIB adapter Work either string oriented or with local protocol handlers
7
Optical Link Optical transceiver for >5kV insulation, necessary for electrostatic separator (200kV) 1 2 3 4 5 6 7 8 start stop enable RS- 485 enable NE555
8
MIDAS integration Hardware Hardware Hardware Interface Interface
MIDAS Online Database Alarm System History Web server
9
MIDAS Custom Pages & History
MIDAS “custom” page for MEG beam line magnet MEG gas system
10
Analog interface Magnet Power Supply Control Box 0-10 V 4-20 mA 24 V
Danfysik PSI Control Box
11
Magnet Control Standalone (non-PC) control of superconducting magnet
12
Digital interface Magnet Power Supply Control Box Interface 0-10 V
Danfysik RS232 PSI “setcurrent 100A” “readcurrent” Interface
13
Web interface Magnet Power Supply Control Box Web server 0-10 V
Danfysik PSI
14
Conclusion The experiment needs central control & monitoring of magnet
Different interfaces and strategies possible Choose method which is best for both sides
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.