Download presentation
Presentation is loading. Please wait.
Published byRalph Howard Modified over 6 years ago
1
Characterisation and Control of Cold Chiral Compounds
Chris Medcraft “Structure and Dynamics of Cold and Controlled Molecules” Center for Free-Electron Laser Science, Hamburg Max-Planck-Institut für Struktur und Dynamik der Materie, Hamburg
2
General Technique Fourier Transform Microwave Spectroscopy
3
Fourier Transform Microwave Spectroscopy
Chirped Pulse FTMW Cavity Based FTMW Chirped Excitation signal 2-8.5 GHz from AWG 300W TWT Amplifier Molecular response measured directly by fast oscilloscope Full spectrum in one shot ≈ 40 kHz resolution Cavity resonance amplifies excitation and molecule signals 6-40 GHz range Molecular response mixed down to radio frequency 1 MHz of spectrum measured at once ≈1 kHz resolution Brown et. Al., Rev. Sci. Instrum. 79, (2008) Grabow et al., Rev. Sci. Instrum. 76, (2005)
4
Chiral Molecules to study Parity Violation
Arises from the weak interaction Test of fundamental physics Small difference in energy between enantiomers Measureable difference in rotational transitions Large atoms increase the effect dramatically Δ pv ∝ Z eff M. Quack, Angew. Chem. 114 (2002) 4812
5
Universität Regensburg
Target molecules CpRe(CO)(NO)I Two heavy atoms Predicted Enantiomeric Energy difference: 316 Hz[1] Enantiomer separation may be difficult Re I N O C Prof. Dr. Robert Wolf Universität Regensburg [1]P. Schwerdtfeger, J. Gierlich, T. Bollwein, Angew. Chem. Int. Ed. 42 (2003) 1293. P. Schwerdtfeger, R. Bast, J. Am. Chem. Soc. 126 (2004) 1652.
6
Target molecules 187Re (62.6%) Spin = +5/2 185Re (37.4%)
127I, Spin = +5/2 14N, Spin = +1 Ab initio Rotational Constants A=759.9 MHz B=423.2 MHz C=379.4 MHz Rotational Temp=0.5 K 187Re Simulation 185Re Simulation
7
CpRe(CO)(NO)(CH3) Results
187Re (62.6%), Spin = +5/2 185Re (37.4%), Spin = +5/2 14N, Spin = +1 Chirped Pulse Broadband FTMW
8
Nuclear Quadrupoles J+IRe=F1 F1+IN=F Ratio of 185Re / 187Re
Quantum Numbers: J, Ka, Kc, F1, F F1 F = Total angular momentum Ratio of 185Re / 187Re Mass = 98.9% A,B,C = % Q = 105.5% J
9
Rhenium Nuclear Quadrupole Hyperfine Splitting
10
Nitrogen Nuclear Quadrupole Hyperfine Splitting
11
Results
12
Cavity 600 mm mirrors 1 m separation 6-40 GHz 1 MHz modes
Resolution ≈1 kHz Require <10 Hz 1 metre
13
Transit time broadening ≈ 150 Hz
Resolution Doppler width ≈1 kHz at 10 GHz δv=30-50 m/s δv=15-20 m/s Transit time broadening ≈ 150 Hz
14
Helium Buffer Gas Or: Microwave focussing and deceleration
Chamber at ≈ 4 K John Doyle and Dave Patterson - Harvard University (Unpublished) Or: Microwave focussing and deceleration Merz et. al., Phys. Rev. A 85,
15
Summary Experimental design Aims Preliminary Results
Characterisation of heavy molecules Parity violation Preliminary Results CpRe(NO)(CO)(CH3)
16
Acknowledgements FD02 WA 03 Chris Medcraft Thomas Betz Alvin Shubert
Melanie Schnell FD05 Simon Merz Jack Graneek Sabrina Zinn David Schmitz
17
Acknowledgements Robert Wolf - Universität Regensburg
Jens-Uwe Grabow - Leibniz Universität Hannover
18
Slow molecules δv=1-3 m/s vDoppler= Hz vtransit ≈ 3 Hz
19
Electronics
20
No Off-diagonal Re NQCC χab and χbc
χab , χbc
21
Calculations Rhenium (Z=75) Nuclear quadrupole coupling
Lots of electrons! Requires relativistic correction Nuclear quadrupole coupling Can’t use pseudopotentials Large off diagonal terms for Rhenium Internal rotations Methyl Cyclopentadienyl Basis Set *no relativistic correction
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.