Presentation is loading. Please wait.

Presentation is loading. Please wait.

Stubbe Hviid1, C. Barbieri2, A. M. Barucci3, I. Bertini2, L

Similar presentations


Presentation on theme: "Stubbe Hviid1, C. Barbieri2, A. M. Barucci3, I. Bertini2, L"— Presentation transcript:

1 Overview of the Rosetta Fly-by of 21-Lutetia as Observed by the OSIRIS Camera System
Stubbe Hviid1, C. Barbieri2, A. M. Barucci3, I. Bertini2, L. Baglivo2, S. Besse4, V. Da Deppo5, S. Debei2, M. DeCecco6, F. Ferri2, S. Fornasier3, O. Groussin7, P. J. Gutiérrez8, L. Jorda7, H. U. Keller9, M. Küppers10, C. Leyrat3, L. Lara8, M. Lazzarin2, J. De Leon8, S. Magrin2, S. Marchi2, M. Massironi2, R. Moissl1, W. Sabolo8, S. E. Schröder1, M. Pertile6, H. Sierks1, C. Snodgrass1, N. Thomas11, C. Tubiana1, J. Vincent1, P. Vernazza12, M. Zaccariotto2, OSIRIS Team 1Max Planck Institute for Solarsystem Research, Germany, 2University of Padua, Italy, 3LESIA, Observatoire de Paris, France, 4University of Maryland, 5CNR-IFN UOS Padua LUXOR, Italy, 6Univertity of Padua, Italy, 7Laboratoire d'Astrophysique de Marseille, Université de Provence, France, 8Instituto de Astrofisica de Andalucia, CSIC, Spain, 9Institut für Geophysik und extraterrestrische Physik (IGEP), Germany, 10ESA-ESAC, Spain, 11Physikalisches Institut, Universität Bern, Switzerland, 12ESA-ESTEC, Netherlands.

2 OSIRIS I MPS Overall responsibility and project management, system engineering, interfaces, Focal Plane Assemblies, CCDs and Readout Boards, HK Boards, integration &qualification of E-Boxes, harnesses, system integration, high level software, NAC & WAC system calibration, QA, mission operations LAM NAC telescope, camera integration and qualification WAC optical bench, camera UPD Integration and qualification, shutter mechanisms and shutter electronics, Front Door Mechanisms (mechanisms for NAC and WAC) IAA Mechanism Controller Board INTA Filter Wheel Mechanisms, E-Box Power Converter Module, NAC & WAC CRB Power Converter Modules RSSD Data Processing Unit IDA Mass memory, low level software and data compression DASP NAC & WAC Filters UPM Thermal and structural analysis, NAC MLI, WAC FPA MLI

3 OSIRIS II NAC WAC Optical design Angular resolution Focal length Mass
Field of view F-number Spatial scale from 100 km Typical filter bandpass Wavelength range Number of filters Estimated detection threshold 3-mirror off-axis 18.6 µrad px-1 717.4 mm 13.2 kg 2.20 x 2.22° 8 1.86 m px-1 40 nm 250nm nm 12 18 mV Optical design Angular resolution Focal length Mass Field of view F-number Spatial scale from 100 km Typical filter bandpass Wavelength range Number of filters Estimated detection threshold 2-mirror off-axis 101 µrad px-1 140(sag)/131(tan) 9.48 kg 11.34 x 12.11° 5.6 10.1 m px-1 5 nm 240nm - 720nm 14 13 mV

4 OSIRIS III 2048 x2048 backlit UV sensitive CCD Anti blooming
Full Well ~ e Gain: 3 e/DN Readout noise < 7 e Thermal Noise ~0.01 DN/s (39.33L Snodgrass et al.)

5 Lutetia Fly-By Distance [km] Angular Size [deg] Time [min]
Fly-By Speed: 15 km/s Minimum distance: 3160km zero phase transit distance: ~17000km

6 OSIRIS Operations Lightcurve 9.5 hours SOPS -18min 0 phase 0min CA
EOPS NAC Shape Reconstruction Spectral Cubes Zero Sat WAC shape Reconstruction Na/OH Spectral Cubes Sat Sat Sat Sat Zero 234 NAC Images WAC Images were acquired

7 Overview

8

9

10 43.04 Thomas et al 43.08 Kueppers et al

11

12 Lutetia Shape 43.03 Jorda et al

13

14 Color and Photometry 43.05 Keller et al 43.06 Leyrat et al

15 Opposition Effect 4.09⁰ 2.01⁰ 0.58⁰ 0.05⁰

16 Hapke Modeling 951 Gaspra S 0.36 -0.18 0.06 1.63 29 0.22 0.11 433 Eros
ASTEROID TYPE w g hS BS0 θ Ap Ab 951 Gaspra S 0.36 -0.18 0.06 1.63 29 0.22 0.11 433 Eros 0.33 -0.25 0.01 1.40 28 0.23 0.092 253 Mathilde C 0.035 0.07 3.18 19 0.041 0.013 9P/Tempel 1 (CM) 0.039 (-0.49) (0.01) (1.0) 16 0.056 0.13 2867 Steins E 0.55 -0.27 0.061 0.63 26 0.41 0.24 21 Lutetia M/C? -0.26 0.047 1.86 31 0.18 0.065 0.21 -0.22 0.076 2.06 32 - Using the same version of Hapke’s model as was used in the analyses of the above objects I get for Steins: w=0.66, g=-0.30, hS=0.027, BS0=0.60, theta=28.

17 Summary Old surface (~3.7Gy) with much younger regions created by ejecta blanket overlay Highly fractured body but not a rubble pile Thick layer of regolith Impact blanket ~600m Collapse ~5km Indications of uneven distribution of regolith Very rough surface Very little color variability No satellites found Surface Physical Properties Fornasier et al Cratering Marchi et al 39.03 Besse et al

18


Download ppt "Stubbe Hviid1, C. Barbieri2, A. M. Barucci3, I. Bertini2, L"

Similar presentations


Ads by Google