Presentation is loading. Please wait.

Presentation is loading. Please wait.

TOPIC 0-FUNDAMENTAL CONCEPTS OF ALGEBRA (MAT0114)

Similar presentations


Presentation on theme: "TOPIC 0-FUNDAMENTAL CONCEPTS OF ALGEBRA (MAT0114)"β€” Presentation transcript:

1 TOPIC 0-FUNDAMENTAL CONCEPTS OF ALGEBRA (MAT0114)
REAL NUMBERS SYSTEM EXPONENTS: LAW OF INDICES ALGEBRAIC EXPRESSION RADICALS

2 1. REAL NUMBER SYSTEM Real Rational Integer Negative Zero Positive Natural Non integer Terminate Decimal Decimal repeat in cycle Irrational Decimal does not repeat in cycle Example1: Classify the numbers into their type (Natural, Integer, Rational, Real). 2.33, βˆ’1.5, 7 4 , πœ‹, 6 , βˆ’ 11 2 , 2

3 INTERVALS Open interval : , Close interval: ,
Union: take all the values in the interval. βˆ’2,3 βˆͺ 2,10 = Intersection: take the intersection values only. 3 ,12)∩ βˆ’2,8 =

4 2. EXPONENTS & RATIONAL EXPONENT
LAW OF EXPONENT LAW OF RATIONAL EXPONENT 1) π‘Ž π‘š Γ— π‘Ž 𝑛 = π‘Ž π‘š+𝑛 2) π‘Ž π‘š Γ· π‘Ž 𝑛 = π‘Ž π‘šβˆ’π‘› 3) π‘Ž π‘š 𝑛 = π‘Ž π‘šπ‘› 4) π‘Žπ‘ 𝑛 = π‘Ž 𝑛 𝑏 𝑛 5) π‘Ž 𝑏 𝑛 = π‘Ž 𝑛 𝑏 𝑛 1) π‘Ž 1 𝑛 = 𝑛 π‘Ž 2) π‘Ž π‘š 𝑛 = 𝑛 π‘Ž π‘š = 𝑛 π‘Ž π‘š 3) π‘Ž π‘š 𝑛 = π‘Ž 1 𝑛 π‘š = π‘Ž π‘š 1 𝑛 THEOREM ON NEGATIVE EXPONENTS 1) π‘Ž βˆ’π‘› = 1 π‘Ž 𝑛 ) π‘Ž βˆ’π‘š 𝑏 βˆ’π‘› = 𝑏 𝑛 π‘Ž π‘š ) π‘Ž 𝑏 βˆ’π‘› = 𝑏 π‘Ž 𝑛

5 3. Algebraic expression Algebraic expression is obtained by applying additions, subtractions, multiplications, divisions, powers or taking roots to collection of variables and real numbers. Simplify the algebraic expression: a) 2𝑒+3 π‘’βˆ’4 +4𝑒 π‘’βˆ’2 =

6 PRODUCT FORMULAS 1) π‘₯+𝑦 π‘₯βˆ’π‘¦ = π‘₯ 2 βˆ’ 𝑦 2 2) π‘₯+𝑦 2 = π‘₯ 2 +2π‘₯𝑦+ 𝑦 2
1) π‘₯+𝑦 π‘₯βˆ’π‘¦ = π‘₯ 2 βˆ’ 𝑦 2 2) π‘₯+𝑦 2 = π‘₯ 2 +2π‘₯𝑦+ 𝑦 2 3) π‘₯βˆ’π‘¦ 2 = π‘₯ 2 βˆ’2π‘₯𝑦+ 𝑦 2 4) π‘₯+𝑦 3 = π‘₯ 3 +3 π‘₯ 2 𝑦+3π‘₯ 𝑦 2 + 𝑦 3 5) π‘₯βˆ’π‘¦ 3 = π‘₯ 3 βˆ’3 π‘₯ 2 𝑦+3π‘₯ 𝑦 2 βˆ’ 𝑦 3 EXERCISES: Find the product i) 2 π‘Ÿ 2 βˆ’ 𝑠 2 π‘Ÿ 2 + 𝑠 = ii) 2π‘₯+3𝑦 3 =

7 FACTORING FORMULAS 1) Difference of two squares: π‘₯ 2 βˆ’ 𝑦 2 = π‘₯+𝑦 π‘₯βˆ’π‘¦
2) Difference of two cubes: π‘₯ 3 βˆ’ 𝑦 3 = π‘₯βˆ’π‘¦ π‘₯ 2 +π‘₯𝑦+ 𝑦 2 3) Sum of two cubes: π‘₯ 3 + 𝑦 3 = π‘₯+𝑦 π‘₯ 2 βˆ’π‘₯𝑦+ 𝑦 2 EXERCISES: Factor each polynomials i) 36 π‘Ÿ 2 βˆ’25 𝑑 2 = ii) 125 π‘₯ 3 βˆ’8=

8 FACTORING BY TRIAL & ERROR
Trying various possibilities to factor the algebraic expression. Factorize: i) 6 π‘₯ 2 βˆ’7π‘₯βˆ’3=

9 FACTORING BY GROUPING If a sum contains four or more terms, it may be possible to group the terms in a suitable manner then find a factorization by using distributive properties. Factor each expression: i) 3 π‘₯ 3 +3 π‘₯ 2 βˆ’27π‘₯βˆ’27=

10 ABSOLUTE VALUE - is defined as the distance from the origin to the specific point/value on real number line. i) if π‘Žβ‰₯0, π‘‘β„Žπ‘’π‘› π‘Ž =π‘Ž ii) if π‘Ž<0, π‘‘β„Žπ‘’π‘› π‘Ž =βˆ’(π‘Ž) Example 1: Evaluate a) 7βˆ’12 = b) πœ‹βˆ’6 =

11 4.0 RADICALS PROPERTIES OF nth ROOT 1) 𝑛 π‘Žπ‘ = 𝑛 π‘Ž 𝑛 𝑏
1) 𝑛 π‘Žπ‘ = 𝑛 π‘Ž 𝑛 𝑏 2) 𝑛 π‘Ž 𝑏 = 𝑛 π‘Ž 𝑛 𝑏 3) π‘š 𝑛 π‘Ž = π‘šπ‘› π‘Ž 4) 𝑛 π‘Ž 𝑛 = π‘Ž if n is even 5) 𝑛 π‘Ž 𝑛 =π‘Ž if n is odd

12 RATIONALIZE DENOMINATOR OF QUOTIENTS
FACTOR IN DENOMINATOR MULTIPLY NUMERATOR AND DENOMINATOR BY: RESULTING FACTOR: π‘Ž π‘Ž 2 =π‘Ž 3 π‘Ž 3 π‘Ž 2 3 π‘Ž 3 =π‘Ž 7 π‘Ž 3 7 π‘Ž 4 7 π‘Ž 7 =π‘Ž Examples: Simplify and rationalize the denominator a) b) 2 π‘₯ c) π‘₯ 4 𝑦 4 9π‘₯


Download ppt "TOPIC 0-FUNDAMENTAL CONCEPTS OF ALGEBRA (MAT0114)"

Similar presentations


Ads by Google