Download presentation
Presentation is loading. Please wait.
Published bySheena Mosley Modified over 6 years ago
1
An Example. The question Data Analyses Conclusions
2
Monthly mean air temperature at Recife 1953-1962
The question: What is the relationship between temperatures in Recife and El Nino? Objectives - to layout analyses - to explore the data for surprises - predicted values - signal + noise? - ...
3
Finding the data. Google with various key words: temperature, Recife, ... "Eventually lead" to: cdiac.ornl.gov/ftp/ndp041 Carbon dioxide information analysis center! Had to discover Recife Curado station id Years Searched an inappropriate ste for a long time (Looked at Brasil sites too, but that didn't turn up the data)
4
notice -9999 replace by NA file: recifecurado
The web data. monthly notice replace by NA file: recifecurado
5
How to handle missing values? Interpolate? Model? ...?
junk<-scan("recifecurado") junk1<-matrix(junk,ncol=48) junk2<-junk1[2:13,] # years in first row series<-c(junk2)/ # for degrees centigrade length(series[is.na(series)]) #17 - need to understand missingness Interpolation series1<-series for(i in 2:(length(series)-1)){if(is.na(series[i]))series1[i]<-.5*series[i-1] +.5*series[i+1]}
6
plot(xaxis,series1,type="l",xlab="year",ylab="mean temp (degrees C)",las=1)
title("Mean monthly temperatures Recife Curado") abline(h=mean(series1))
7
There is seasonality and variability
Restricted range in mid-sixties - nonconstant mean level? ylim<-range(series1) par(mfrow=c(2,1)) plot(lowess(xaxis,series1),type="l",ylim=ylim,xlab="year",ylab="degrees C",main="Smoothed Recife series") abline(h=mean(series1)) junk20<-lowess(xaxis,series1) plot(xaxis,series1-junk20$y,type="l",xlab="year",ylab="degrees C",main="Residuals") abline(h=mean(series1-junk20$y))
9
par(mfrow=c(1,1)) acf(series1,las=1,xlab="lag(mo)",ylab="",main="autocorrelation recife temperatures",lag.max=50,ylim=c(-1,1))
10
More confirmation of period 12
Remember the interpretation of the error lines Note that nearby values are highly correlated
11
spectrum(series1,xlab="frequency (cycles/month)",las=1)
12
Note peaks at frequency 1/12 and harmonics
Further confirmation of period 12 Note log scale for y-axis Note vertical line in upper right Gives uncertainty
13
What is the shape of the seasonal?
junk4<-matrix(series1,nrow=12) junk5<-apply(junk4,1,mean) plot(junk5,type="l",las=1) abline(h=mean(junk5))
14
Cooler in July-Aug Southern Hemisphere Uncertainty?
15
Cooler in July-August. Southern hemisphere
Part of a longer cycle? El Nino explanatory? After "removing" trend middle has been pulled up Need uncertainties Back to original data
16
Remove seasonal series2<-series1 for(i in 1:48){ for(j in 1:12){ series2[(i-1)*12+j]<-series1[(i-1)*12+j]-junk5[j] } par(mfrow=c(2,1)) plot(xaxis,series2,type="l",xlab="year",ylab="residual",main="Series after removing seasonal",las=1) abline(h=0) ylim<-range(series2) plot(xaxis,series1-mean(series1),type="l",xlab="year",ylab="degreesC",main="Mean removed series",las=1,ylim=ylim) abline(h=mean(series1-mean(series1)))
17
original variance 1.342 adjusted .248
18
par(mfrow=c(2,1)) acf(series2,lag.max=50,las=1,xlab="lag (mo)",main="Ajusted by removing monthly means",las=1) acf(diff(series1,lag=12),lag.max=50,xlab="lag (mo)",main="Order 12 differenced series")
19
Frequency domain analysis.
par(mfrow=c(2,1)) junk9<-spec.pgram(series1,taper=0,detrend=F,demean=F,spans=5,plot=F) ylim<-range(junk9$spec) junk9<-spec.pgram(series1,taper=0,detrend=F,demean=F,spans=5,xlab="frequency (cycles/mo)",las=1,main="Original series") junk10<-spec.pgram(series2,taper=0,detrend=F,demean=F,spans=5,ylim=ylim,main="Monthly means removed",las=1)
20
Work remains on seasonal
Residual "not" white noise
21
Time domain distributions
22
Parametric model. SARIMA ?
Thinking about prediction, consider Yt = αYt-1 + βYt-12 + Nt with some ARMA for Nt Check seasonal residuals for normality Hope to end up with white noise
23
Junk<-arima(series1,order=c(1,0,1),seasonal=list(order=c(1,0,1),period=12))
Call: arima(x = series1, order = c(1, 0, 1), seasonal = list(order = c(1, 0, 1), period = 12)) Coefficients: ar ma1 sar1 sma1 intercept s.e sigma^2 estimated as : log likelihood = , aic =
25
tsdiag(Junk,gof.lag=25)
27
Junk<-arima(series1,order=c(1,0,1),seasonal=list(order=c(1,0,1),period=12))
postscript(file="recifeplots1a.ps",paper="letter",hor=T) Junk2<-predict(Junk,n.ahead=24) Junk3<-c(series1,Junk2$pred) Junk3a<-c(rep(0,576),2*Junk2$se) Junk3b<-c(rep(0,576),-2*Junk2$se) Junk4a<-Junk3+Junk3a;Junk4b<-Junk3+Junk3b ylim<-range(Junk4a,Junk4b) par(mfrow=c(1,1)) xaxis1<-1941+(1:length(Junk3)/12) plot(xaxis1[xaxis1>1983],Junk4a[xaxis1>1983],type="l",las=1,ylim=ylim,col="red",xlab="year",ylab="degrees C",main="Data + predictions") lines(xaxis1[xaxis1>1983],Junk4b[xaxis1>1983],col="red") lines(xaxis1[xaxis1>1983],Junk3[xaxis1>1983],col="blue") lines(xaxis[xaxis>1983],series1[xaxis>1983])
28
Two series Bivariate case {Xt, Yt} - jointly distributed Linear time invariant / transfer function model nonparametric/parametric approaches
29
Southern Oscillation Index
El Niño: global coupled ocean-atmosphere phenomenon. The Pacific ocean signatures, El Niño and La Niña are important temperature fluctuations in surface waters of the tropical Eastern Pacific Ocean
30
Southern Oscillation reflects monthly or seasonal fluctuations in the air pressure difference between Tahiti and Darwin
31
junk<-scan("recifecurado")
junk1<-matrix(junk,ncol=48) junk6<-junk1[1,] junk1<-junk1[,junk6>1950] junk2<-junk1[2:13,] series<-c(junk2)/10 length(series[is.na(series)]) #13 xaxis<-1951+(1:length(series)/12) series1<-series junk4<-matrix(series1,nrow=12) junk5<-apply(junk4,1,mean) for(i in 2:(length(series)-1)){if(is.na(series[i]))series1[i]<-.5*series[i-1]+.5*series[i+1]} series2<-series1 for(i in 1:38){ for(j in 1:12){ series2[(i-1)*12+j]<-series1[(i-1)*12+j]-junk5[j]}}
32
kunk<-scan("SOIa.dat")
kunk1<-matrix(kunk,ncol=58); kunk6<-kunk1[1,] kunk1<-kunk1[,kunk6<1989] kunk2<-kunk1[2:13,] teries<-c(kunk2) length(teries[is.na(teries)]) #0 teries1<-teries; teries2<-teries1 postscript(file="recifeplots3.ps",paper="letter",hor=T) par(mfrow=c(2,1)) plot(xaxis,series2,type="l",las=1,xlab="year",ylab="",main="Seasonally adjusted Recife temps") plot(xaxis,teries2,type="l",las=1,xlab="year",ylab="",main="Southern Oscillation Index")
33
postscript(file="recifeplots2.ps",paper="letter",hor=F)
par(mfrow=c(1,1)) acf(cbind(series2,teries2))
35
junk10<-cbind(series2,teries2)
junk11<-spec.pgram(junk10,plot=F,taper=0,detrend=F,demean=F,spans=11) par(mfcol=c(2,2)) plot(junk11$freq,10**(.1*junk11$spec[,2]),log="y",main="SOIspectrum", xlab="frequency", ylab="", las=1,type="l") plot(junk11$freq,junk11$coh,main="Coherence",xlab="frequency",ylab="",las=1,ylim=c(0,1),type="l") junkh<-1-(1-.95)**(1/(.5*junk11$df-1)) abline(h=junkh) plot(junk11$freq,10**(.1*junk11$spec[,1]),log="y",main="Seasonally corrected Recife spectrum",xlab="frequency", ylab="",las=1, type="l")
36
SARIMAX Yt = αYt-1 + βYt-12 + γXt + Nt ar ma1 sar1 sma1 intercept teries1 s.e sigma^2 estimated as : log likelihood = , aic = Junk1<-arima(series1,order=c(1,0,1),seasonal=list(order=c(1,0,1),period=12),xreg=teries1)
37
The answer to the question:
There is a hint of a linear time invariant relationship.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.