Download presentation
Presentation is loading. Please wait.
1
Proportional Hazard Models
Bo Gallant
2
Presentation Topics Introduction Model Structure Partial Likelihoods
Background information Main assumptions Model Structure PH function Survival function Partial Likelihoods Without and with tied observations explanation Without tied observations equations With tied observations equations Newton-Raphson equation
3
Introduction β π‘ = π½ 0 + π½ 1 π = expβ‘(π½ 0 + π½ 1 π)
Model Structure Partial Likelihood Introduction Background Information Non-parametric: donβt need to know distribution Constant hazard function over time: similar to Exponential Hazard function of different individuals are proportional and independent of time Main Assumptions Hazard function of different individuals are proportional and independent of time β(π‘| π 1 ) β(π‘| π 2 ) =πΆ β(π‘| π 1 ) proportional to β π‘ π 2 PH Model Background Equation Fix Negative β π‘ = π½ 0 + π½ 1 π = expβ‘(π½ 0 + π½ 1 π) = expβ‘(π½ 0 )expβ‘( π½ 1 π) = β 0 (π‘)expβ‘( π½ 1 π) Proportional Hazard Function β(π‘| π 1 ) β(π‘| π 2 ) = β 0 π‘ expβ‘ π β² π 1 β 0 π‘ expβ‘ π β² π 2 = β 0 π‘ π( π 1 ) β 0 π‘ π( π 2 ) = π( π 1 ) π( π 2 ) Constant and independent of time
4
Model Structure S(t) = π 0 (π‘) expβ‘( π β² π)
Introduction Model Structure Partial Likelihood Model Structure Proportional Hazard Function g π = exp π β² π = exp π=1 π π π π₯ π β(π‘| π 1 ) β(π‘| π 2 ) = π( π 1 ) π( π 2 ) = expβ‘ π β² π 1 expβ‘ π β² π 2 Survival Function General Survival Equation: S(t) = exp β 0 π‘ β π ππ S(t) = exp β 0 π‘ β 0 π expβ‘( π β² π)ππ PH Survival Equation: = exp β 0 π‘ β 0 π ππβexpβ‘( π β² π) S(t) = π 0 (π‘) expβ‘( π β² π)
5
Partial Likelihoods Types of PL Example Without Tied Observations
Introduction Model Structure Partial Likelihood Partial Likelihoods Types of PL 2 Types of Partial Likelihoods Equations: Equation for data sets Without Tied Observations Equations for data sets With Tied Observations Reasons? PL equation depends on order of failures For Tied observations, order is unknown Example Without Tied Observations With Tied Observations 5 Individuals Without Tied Failures: 5 Individuals with 3 Tied Failures: Individual (i) Time (t) 1 5 2 10 3 15 4 20 25 Individual (i) Time (t) 1 5 2 3 4 10 15
6
Partial Likelihoods β Without Tied Observations
Introduction Model Structure Partial Likelihood Partial Likelihoods β Without Tied Observations Probability Failure of an Individual at time t(i) R(t(i)): Risk set which is everyone at Risk at time t(i) Partial Likelihood πΏ π = π=π π ππ₯π( π=π π π π π π(π) ) πβπΉ( π π ) ππ₯π( π=π π π π π ππ ) = π=π π ππ₯π( πβ²π (π) ) πβπΉ( π π ) ππ₯π(πβ² π π )
7
Partial Likelihoods β Without Tied Observations
Introduction Model Structure Partial Likelihood Partial Likelihoods β Without Tied Observations 5 Individuals Without Tied Failures: Hazard functions: Individual (i) Time (t) 1 5 2 10 3 15 4 20 25 β(π‘|π₯ 1 )= β 0 (π‘)ππ₯π( π β² π π ) β(π‘|π₯ 2 )= β 0 (π‘)ππ₯π( π β² π π ) β(π‘|π₯ 3 )= β 0 (π‘)ππ₯π( π β² π π ) β(π‘|π₯ 4 )= β 0 (π‘)ππ₯π( π β² π π ) β(π‘|π₯ 5 )= β 0 (π‘)ππ₯π( π β² π π ) Partial Likelihood πΏ π = π=π π ππ₯π( π=π π π π π π(π) ) πβπΉ( π π ) ππ₯π( π=π π π π π ππ ) = π=π π ππ₯π( πβ²π (π) ) πβπΉ( π π ) ππ₯π(πβ² π π ) L π = β(5|π₯ 1 ) β(5|π₯ 1 )+ β(5|π₯ 2 )+ β(5|π₯ 3 )+ β(5|π₯ 4 )+ β(5|π₯ 5 ) β(10|π₯ 2 ) β(10|π₯ 2 )+ β(10|π₯ 3 )+ β(10|π₯ 4 )+ β(10|π₯ 5 ) * β(15|π₯ 3 ) β(15|π₯ 3 )+ β(15|π₯ 4 )+ β(15|π₯ 5 ) β(20|π₯ 4 ) β(20|π₯ 4 )+ β(20|π₯ 5 ) β(25|π₯ 5 ) β(25|π₯ 5 )
8
Partial Likelihood - Tied Observations
Introduction Model Structure Partial Likelihood Partial Likelihood - Tied Observations 5 Individuals with 3 Tied Failures: Hazard functions: Individual (i) Time (t) 1 5 2 3 4 10 15 β(π‘|π₯ 1 )= β 0 (π‘)ππ₯π( π β² π π ) β(π‘|π₯ 2 )= β 0 (π‘)ππ₯π( π β² π π ) β(π‘|π₯ 3 )= β 0 (π‘)ππ₯π( π β² π π ) β(π‘|π₯ 4 )= β 0 (π‘)ππ₯π( π β² π π ) β(π‘|π₯ 5 )= β 0 (π‘)ππ₯π( π β² π π ) 1) Breslow Estimation (1974) πΏ π π = π=π π ππ₯π( πβ² πβ(π) π) πβπΉ( π π ) ππ₯π( π β² π π) R(t(i)): Risk set: everyone at Risk at time t(i) m(i) : # individual fail at t(i) π β π : set of m(i) individuals failed at time t(i) πΏ π΅ π = β(5|π₯ 1 ) β(5|π₯ 1 )+ β(5|π₯ 2 )+ β(5|π₯ 3 )+ β(5|π₯ 4 )+ β(5|π₯ 5 ) β(5|π₯ 2 ) β(5|π₯ 1 )+ β(5|π₯ 2 )+ β(5|π₯ 3 )+ β(5|π₯ 4 )+ β(5|π₯ 5 ) * β(5|π₯ 3 ) β(5|π₯ 1 )+ β(5|π₯ 2 )+ β(5|π₯ 3 )+ β(5|π₯ 4 )+ β(5|π₯ 5 ) β(10|π₯ 4 ) β(10|π₯ 4 )+ β(20|π₯ 5 ) β(15|π₯ 5 ) β(15|π₯ 5 )
9
Partial Likelihood - Tied Observations
Introduction Model Structure Partial Likelihood Partial Likelihood - Tied Observations 2) Efron Estimation (1977) πΏ πΈ π = π=π π ππ₯π( πβ² πβ(π) π) π=π π (π) πβπΉ( π π ) ππ₯π( π β² π π) β πβπ π (π) πβ π (π) β ππ₯π( π β² π π) R(t(i)): Risk set: everyone at Risk at time t(i) m(i) : # individual fail at t(i) π β π : set of m(i) individuals failed at time t(i) πΏ πΈ π = β(5|π₯ 1 ) β(5|π₯ 1 )+ β(5|π₯ 2 )+ β(5|π₯ 3 )+ β(5|π₯ 4 )+ β(5|π₯ 5 )β πβπ π [ β(5|π₯ 1 )+ β(5|π₯ 2 )+ β(5|π₯ 3 )] * β(5|π₯ 2 ) β(5|π₯ 1 )+ β(5|π₯ 2 )+ β(5|π₯ 3 )+ β(5|π₯ 4 )+ β(5|π₯ 5 )β πβπ π [ β(5|π₯ 1 )+ β(5|π₯ 2 )+ β(5|π₯ 3 )] * β(5|π₯ 3 ) β(5|π₯ 1 )+ β(5|π₯ 2 )+ β(5|π₯ 3 )+ β(5|π₯ 4 )+ β(5|π₯ 5 )β πβπ π [ β(5|π₯ 1 )+ β(5|π₯ 2 )+ β(5|π₯ 3 )] β(10|π₯ 4 ) β(10|π₯ 4 )+ β(10|π₯ 5 ) β(15|π₯ 5 ) β(15|π₯ 5 ) πΏ πΈ π = β(5|π₯ 1 ) β(5|π₯ 1 )+ β(5|π₯ 2 )+ β(5|π₯ 3 )+ β(5|π₯ 4 )+ β(5|π₯ 5 ) * β(5|π₯ 2 ) π π β(5|π₯ 1 )+ π π β(5|π₯ 2 )+ π π β(5|π₯ 3 )+ β(5|π₯ 4 )+ β(5|π₯ 5 ) * β(5|π₯ 3 ) π π β(5|π₯ 1 )+ π π β(5|π₯ 2 )+ π π β(5|π₯ 3 )+ β(5|π₯ 4 )+ β(5|π₯ 5 ) β(10|π₯ 4 ) β(10|π₯ 4 )+ β(10|π₯ 5 ) β(15|π₯ 5 ) β(15|π₯ 5 )
10
Newton-Raphson Algorithm
Introduction Model Structure Partial Likelihood Newton-Raphson Algorithm Follow these Steps to find Estimates: Step 1) Let the initial values of π 1 ,β¦, π π be the π (0) . For example, we can let π (0) = 0 or some other value. Step 2) The changes β π for b is β π = β π 2 π( π πβ1 ) πππ π β² β1 ππ( π πβ1 ) ππ Step 3) The new value of π π = π (πβ1) +β π Step 4) Repeat steps 2) and 3) until ||β π ||<πΏ where πΏ is a specified small value such as 10 β4 or 10 β5 . Once the algorithm is stopped, the estimated value will be π= π (πβ1) Only 1 Time Check Every Time
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.