Presentation is loading. Please wait.

Presentation is loading. Please wait.

Proportional Hazard Models

Similar presentations


Presentation on theme: "Proportional Hazard Models"β€” Presentation transcript:

1 Proportional Hazard Models
Bo Gallant

2 Presentation Topics Introduction Model Structure Partial Likelihoods
Background information Main assumptions Model Structure PH function Survival function Partial Likelihoods Without and with tied observations explanation Without tied observations equations With tied observations equations Newton-Raphson equation

3 Introduction β„Ž 𝑑 = 𝛽 0 + 𝛽 1 𝑋 = exp⁑(𝛽 0 + 𝛽 1 𝑋)
Model Structure Partial Likelihood Introduction Background Information Non-parametric: don’t need to know distribution Constant hazard function over time: similar to Exponential Hazard function of different individuals are proportional and independent of time Main Assumptions Hazard function of different individuals are proportional and independent of time β„Ž(𝑑| 𝒙 1 ) β„Ž(𝑑| 𝒙 2 ) =𝐢 β„Ž(𝑑| 𝒙 1 ) proportional to β„Ž 𝑑 𝒙 2 PH Model Background Equation Fix Negative β„Ž 𝑑 = 𝛽 0 + 𝛽 1 𝑋 = exp⁑(𝛽 0 + 𝛽 1 𝑋) = exp⁑(𝛽 0 )exp⁑( 𝛽 1 𝑋) = β„Ž 0 (𝑑)exp⁑( 𝛽 1 𝑋) Proportional Hazard Function β„Ž(𝑑| 𝒙 1 ) β„Ž(𝑑| 𝒙 2 ) = β„Ž 0 𝑑 exp⁑ 𝒃 β€² 𝒙 1 β„Ž 0 𝑑 exp⁑ 𝒃 β€² 𝒙 2 = β„Ž 0 𝑑 𝑔( 𝒙 1 ) β„Ž 0 𝑑 𝑔( 𝒙 2 ) = 𝑔( 𝒙 1 ) 𝑔( 𝒙 2 ) Constant and independent of time

4 Model Structure S(t) = 𝑆 0 (𝑑) exp⁑( 𝒃 β€² 𝒙)
Introduction Model Structure Partial Likelihood Model Structure Proportional Hazard Function g 𝒙 = exp 𝒃 β€² 𝒙 = exp 𝑗=1 𝑝 𝑏 𝑗 π‘₯ 𝑗 β„Ž(𝑑| 𝒙 1 ) β„Ž(𝑑| 𝒙 2 ) = 𝑔( 𝒙 1 ) 𝑔( 𝒙 2 ) = exp⁑ 𝒃 β€² 𝒙 1 exp⁑ 𝒃 β€² 𝒙 2 Survival Function General Survival Equation: S(t) = exp βˆ’ 0 𝑑 β„Ž 𝜏 π‘‘πœ S(t) = exp βˆ’ 0 𝑑 β„Ž 0 𝜏 exp⁑( 𝒃 β€² 𝒙)π‘‘πœ PH Survival Equation: = exp βˆ’ 0 𝑑 β„Ž 0 𝜏 π‘‘πœβˆ—exp⁑( 𝒃 β€² 𝒙) S(t) = 𝑆 0 (𝑑) exp⁑( 𝒃 β€² 𝒙)

5 Partial Likelihoods Types of PL Example Without Tied Observations
Introduction Model Structure Partial Likelihood Partial Likelihoods Types of PL 2 Types of Partial Likelihoods Equations: Equation for data sets Without Tied Observations Equations for data sets With Tied Observations Reasons? PL equation depends on order of failures For Tied observations, order is unknown Example Without Tied Observations With Tied Observations 5 Individuals Without Tied Failures: 5 Individuals with 3 Tied Failures: Individual (i) Time (t) 1 5 2 10 3 15 4 20 25 Individual (i) Time (t) 1 5 2 3 4 10 15

6 Partial Likelihoods – Without Tied Observations
Introduction Model Structure Partial Likelihood Partial Likelihoods – Without Tied Observations Probability Failure of an Individual at time t(i) R(t(i)): Risk set which is everyone at Risk at time t(i) Partial Likelihood 𝐿 𝒃 = π’Š=𝟏 π’Œ 𝑒π‘₯𝑝( 𝒋=𝟏 𝒑 𝒃 𝒋 𝒙 𝒋(π’Š) ) π‘™βˆˆπ‘Ή( 𝒕 π’Š ) 𝑒π‘₯𝑝( 𝒋=𝟏 𝒑 𝒃 𝒋 𝒙 𝒋𝒍 ) = π’Š=𝟏 π’Œ 𝑒π‘₯𝑝( 𝒃′𝒙 (π’Š) ) π‘™βˆˆπ‘Ή( 𝒕 π’Š ) 𝑒π‘₯𝑝(𝒃′ 𝒙 𝒍 )

7 Partial Likelihoods – Without Tied Observations
Introduction Model Structure Partial Likelihood Partial Likelihoods – Without Tied Observations 5 Individuals Without Tied Failures: Hazard functions: Individual (i) Time (t) 1 5 2 10 3 15 4 20 25 β„Ž(𝑑|π‘₯ 1 )= β„Ž 0 (𝑑)𝑒π‘₯𝑝( 𝒃 β€² 𝒙 𝟏 ) β„Ž(𝑑|π‘₯ 2 )= β„Ž 0 (𝑑)𝑒π‘₯𝑝( 𝒃 β€² 𝒙 𝟐 ) β„Ž(𝑑|π‘₯ 3 )= β„Ž 0 (𝑑)𝑒π‘₯𝑝( 𝒃 β€² 𝒙 πŸ‘ ) β„Ž(𝑑|π‘₯ 4 )= β„Ž 0 (𝑑)𝑒π‘₯𝑝( 𝒃 β€² 𝒙 πŸ’ ) β„Ž(𝑑|π‘₯ 5 )= β„Ž 0 (𝑑)𝑒π‘₯𝑝( 𝒃 β€² 𝒙 πŸ“ ) Partial Likelihood 𝐿 𝒃 = π’Š=𝟏 π’Œ 𝑒π‘₯𝑝( 𝒋=𝟏 𝒑 𝒃 𝒋 𝒙 𝒋(π’Š) ) π‘™βˆˆπ‘Ή( 𝒕 π’Š ) 𝑒π‘₯𝑝( 𝒋=𝟏 𝒑 𝒃 𝒋 𝒙 𝒋𝒍 ) = π’Š=𝟏 π’Œ 𝑒π‘₯𝑝( 𝒃′𝒙 (π’Š) ) π‘™βˆˆπ‘Ή( 𝒕 π’Š ) 𝑒π‘₯𝑝(𝒃′ 𝒙 𝒍 ) L 𝒃 = β„Ž(5|π‘₯ 1 ) β„Ž(5|π‘₯ 1 )+ β„Ž(5|π‘₯ 2 )+ β„Ž(5|π‘₯ 3 )+ β„Ž(5|π‘₯ 4 )+ β„Ž(5|π‘₯ 5 ) β„Ž(10|π‘₯ 2 ) β„Ž(10|π‘₯ 2 )+ β„Ž(10|π‘₯ 3 )+ β„Ž(10|π‘₯ 4 )+ β„Ž(10|π‘₯ 5 ) * β„Ž(15|π‘₯ 3 ) β„Ž(15|π‘₯ 3 )+ β„Ž(15|π‘₯ 4 )+ β„Ž(15|π‘₯ 5 ) β„Ž(20|π‘₯ 4 ) β„Ž(20|π‘₯ 4 )+ β„Ž(20|π‘₯ 5 ) β„Ž(25|π‘₯ 5 ) β„Ž(25|π‘₯ 5 )

8 Partial Likelihood - Tied Observations
Introduction Model Structure Partial Likelihood Partial Likelihood - Tied Observations 5 Individuals with 3 Tied Failures: Hazard functions: Individual (i) Time (t) 1 5 2 3 4 10 15 β„Ž(𝑑|π‘₯ 1 )= β„Ž 0 (𝑑)𝑒π‘₯𝑝( 𝒃 β€² 𝒙 𝟏 ) β„Ž(𝑑|π‘₯ 2 )= β„Ž 0 (𝑑)𝑒π‘₯𝑝( 𝒃 β€² 𝒙 𝟐 ) β„Ž(𝑑|π‘₯ 3 )= β„Ž 0 (𝑑)𝑒π‘₯𝑝( 𝒃 β€² 𝒙 πŸ‘ ) β„Ž(𝑑|π‘₯ 4 )= β„Ž 0 (𝑑)𝑒π‘₯𝑝( 𝒃 β€² 𝒙 πŸ’ ) β„Ž(𝑑|π‘₯ 5 )= β„Ž 0 (𝑑)𝑒π‘₯𝑝( 𝒃 β€² 𝒙 πŸ“ ) 1) Breslow Estimation (1974) 𝐿 𝑏 𝒃 = π’Š=𝟏 π’Œ 𝑒π‘₯𝑝( 𝒙′ π’–βˆ—(π’Š) 𝒃) π‘™βˆˆπ‘Ή( 𝒕 π’Š ) 𝑒π‘₯𝑝( 𝒙 β€² 𝒍 𝒃) R(t(i)): Risk set: everyone at Risk at time t(i) m(i) : # individual fail at t(i) 𝒖 βˆ— π’Š : set of m(i) individuals failed at time t(i) 𝐿 𝐡 𝒃 = β„Ž(5|π‘₯ 1 ) β„Ž(5|π‘₯ 1 )+ β„Ž(5|π‘₯ 2 )+ β„Ž(5|π‘₯ 3 )+ β„Ž(5|π‘₯ 4 )+ β„Ž(5|π‘₯ 5 ) β„Ž(5|π‘₯ 2 ) β„Ž(5|π‘₯ 1 )+ β„Ž(5|π‘₯ 2 )+ β„Ž(5|π‘₯ 3 )+ β„Ž(5|π‘₯ 4 )+ β„Ž(5|π‘₯ 5 ) * β„Ž(5|π‘₯ 3 ) β„Ž(5|π‘₯ 1 )+ β„Ž(5|π‘₯ 2 )+ β„Ž(5|π‘₯ 3 )+ β„Ž(5|π‘₯ 4 )+ β„Ž(5|π‘₯ 5 ) β„Ž(10|π‘₯ 4 ) β„Ž(10|π‘₯ 4 )+ β„Ž(20|π‘₯ 5 ) β„Ž(15|π‘₯ 5 ) β„Ž(15|π‘₯ 5 )

9 Partial Likelihood - Tied Observations
Introduction Model Structure Partial Likelihood Partial Likelihood - Tied Observations 2) Efron Estimation (1977) 𝐿 𝐸 𝒃 = π’Š=𝟏 π’Œ 𝑒π‘₯𝑝( 𝒙′ π’–βˆ—(π’Š) 𝒃) 𝒋=𝟏 π’Ž (π’Š) π‘™βˆˆπ‘Ή( 𝒕 π’Š ) 𝑒π‘₯𝑝( 𝒙 β€² 𝒍 𝒃) βˆ’ π’‹βˆ’πŸ π’Ž (π’Š) π‘™βˆˆ 𝒖 (π’Š) βˆ— 𝑒π‘₯𝑝( 𝒙 β€² 𝒍 𝒃) R(t(i)): Risk set: everyone at Risk at time t(i) m(i) : # individual fail at t(i) 𝒖 βˆ— π’Š : set of m(i) individuals failed at time t(i) 𝐿 𝐸 𝒃 = β„Ž(5|π‘₯ 1 ) β„Ž(5|π‘₯ 1 )+ β„Ž(5|π‘₯ 2 )+ β„Ž(5|π‘₯ 3 )+ β„Ž(5|π‘₯ 4 )+ β„Ž(5|π‘₯ 5 )βˆ’ πŸβˆ’πŸ πŸ‘ [ β„Ž(5|π‘₯ 1 )+ β„Ž(5|π‘₯ 2 )+ β„Ž(5|π‘₯ 3 )] * β„Ž(5|π‘₯ 2 ) β„Ž(5|π‘₯ 1 )+ β„Ž(5|π‘₯ 2 )+ β„Ž(5|π‘₯ 3 )+ β„Ž(5|π‘₯ 4 )+ β„Ž(5|π‘₯ 5 )βˆ’ πŸβˆ’πŸ πŸ‘ [ β„Ž(5|π‘₯ 1 )+ β„Ž(5|π‘₯ 2 )+ β„Ž(5|π‘₯ 3 )] * β„Ž(5|π‘₯ 3 ) β„Ž(5|π‘₯ 1 )+ β„Ž(5|π‘₯ 2 )+ β„Ž(5|π‘₯ 3 )+ β„Ž(5|π‘₯ 4 )+ β„Ž(5|π‘₯ 5 )βˆ’ πŸ‘βˆ’πŸ πŸ‘ [ β„Ž(5|π‘₯ 1 )+ β„Ž(5|π‘₯ 2 )+ β„Ž(5|π‘₯ 3 )] β„Ž(10|π‘₯ 4 ) β„Ž(10|π‘₯ 4 )+ β„Ž(10|π‘₯ 5 ) β„Ž(15|π‘₯ 5 ) β„Ž(15|π‘₯ 5 ) 𝐿 𝐸 𝒃 = β„Ž(5|π‘₯ 1 ) β„Ž(5|π‘₯ 1 )+ β„Ž(5|π‘₯ 2 )+ β„Ž(5|π‘₯ 3 )+ β„Ž(5|π‘₯ 4 )+ β„Ž(5|π‘₯ 5 ) * β„Ž(5|π‘₯ 2 ) 𝟐 πŸ‘ β„Ž(5|π‘₯ 1 )+ 𝟐 πŸ‘ β„Ž(5|π‘₯ 2 )+ 𝟐 πŸ‘ β„Ž(5|π‘₯ 3 )+ β„Ž(5|π‘₯ 4 )+ β„Ž(5|π‘₯ 5 ) * β„Ž(5|π‘₯ 3 ) 𝟏 πŸ‘ β„Ž(5|π‘₯ 1 )+ 𝟏 πŸ‘ β„Ž(5|π‘₯ 2 )+ 𝟏 πŸ‘ β„Ž(5|π‘₯ 3 )+ β„Ž(5|π‘₯ 4 )+ β„Ž(5|π‘₯ 5 ) β„Ž(10|π‘₯ 4 ) β„Ž(10|π‘₯ 4 )+ β„Ž(10|π‘₯ 5 ) β„Ž(15|π‘₯ 5 ) β„Ž(15|π‘₯ 5 )

10 Newton-Raphson Algorithm
Introduction Model Structure Partial Likelihood Newton-Raphson Algorithm Follow these Steps to find Estimates: Step 1) Let the initial values of 𝑏 1 ,…, 𝑏 𝑝 be the 𝑏 (0) . For example, we can let 𝑏 (0) = 0 or some other value. Step 2) The changes βˆ† 𝑗 for b is βˆ† 𝑗 = βˆ’ πœ• 2 𝑙( 𝒃 π‘—βˆ’1 ) πœ•π’ƒπœ• 𝒃 β€² βˆ’1 πœ•π‘™( 𝒃 π‘—βˆ’1 ) πœ•π’ƒ Step 3) The new value of 𝒃 𝑗 = 𝒃 (π‘—βˆ’1) +βˆ† 𝑗 Step 4) Repeat steps 2) and 3) until ||βˆ† π‘š ||<𝛿 where 𝛿 is a specified small value such as 10 βˆ’4 or 10 βˆ’5 . Once the algorithm is stopped, the estimated value will be 𝐛= 𝒃 (π‘šβˆ’1) Only 1 Time Check Every Time


Download ppt "Proportional Hazard Models"

Similar presentations


Ads by Google