Download presentation
Presentation is loading. Please wait.
Published byEthelbert Douglas Modified over 6 years ago
1
Multistate Problems in Quantum & Statistical Mechanics
– Analytically Solvable Models CTS Seminer - IIT Kharagpur, February 11, 2016. Aniruddha Chakraborty Associate Professor, School of Basic Sciences. Indian Institute of Technology Mandi, Himachal Pradesh, India. Web:
2
Our Research Group Ph.D. Students:
Ms. Paromita Dutta – Inverse Problems in Scattering & Diffusion. Ms. Moumita Ganguly – Reaction-Diffusion Systems in Biology. M.Sc. Students: Ms. Shivani Verma – Electron correlation in chemical bonding. Mr. Deepak Kumar – Nano Devices: Vibrational Dynamics. Alumni: Dr. Diwaker Kumar – Assistant Professor, Central University of Himachal Pradesh. Thesis Title: Exact solution of few multi-state problems in quantum & statistical mechanics.
3
Our Research Nano Devices. Multistate Problems in Quantum Mechanics.
Barrierless Reactions in Solution. Heat Diffusion in Realistic Solid Material. Inverse Eigenvalue Problem. Electron Correlation.
4
Proton/electron Transfer
𝑯 + 𝑯 + A B A B Assumption: RHA & RHB is fixed. Potential Energy (Schematic) Nuclear coordinate RAB Li Cl 𝐿𝑖 + 𝐶𝑙 −
5
Atom-exchange Reaction
H D H H D 𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛: <𝐻𝐻𝐷=180° Potential Energy (Schematic) H-D : Excited electronic State H-D : Ground electronic State Reaction coordinate (approx. Anti-sym. Stretch)
6
Long Range Proton/electron Transport
Potential Energy (Schematic) Nuclear coordinate (x) H H H H H
7
Multi state Problems V1 V3 V2 V1 V2 V3 Nuclear coordinate RAB 𝑯 + H H
Potential Energy (Schematic) V2 Nuclear coordinate RAB 𝑯 + H H V1 V2 V3 A B 𝑨 B A 𝑩 +
8
Multi - State Problem (Non-stationary state)
IF Ψ(𝒙,𝟎) 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛, what is Ψ(𝒙,t) ? Or at least, what is Ψ (𝑥,𝒔) ? t = 0 Potential Energy (Schematic) Nuclear coordinate RAB Ψ 1 (𝒙,𝟎) ≠ 0 Ψ 2 (𝒙,𝟎) = 0 Ψ 1 (𝒙,t) = ? Ψ 2 (𝒙,t) = ?
9
Multi - State Problem (stationary state)
2 1 Potential Energy (Schematic) 𝑇 12 𝐸 = ? Nuclear coordinate RAB
10
Plan: An analytical method …….
Multi-state Problem: Time independent Arbitrary Coupling. Multi-state Problem: Time dependent Arbitrary Coupling Arbitrary Coupling Collection of Dirac Delta Function Couplings Dirac Delta Function Coupling Dirac Delta Function Potential
11
Dirac Delta Potential Barrier
V x =k0 δ(𝑥−𝑥𝑐) 𝐻(𝑥) ϕ (x)= E ϕ(𝑥) Where, 𝐻 =𝐾. 𝐸. +𝑃.𝐸. ϕ(𝑥)= 𝑒 𝑖𝑘𝑥 + R 𝑒 −𝑖𝑘𝑥 ϕ(𝑥)= T 𝑒 𝑖𝑘𝑥 𝑃.𝐸.=𝑘0 δ (𝑥−𝑥𝑐) x Two Boundary Conditions 𝑘 2 = 2 𝑚 𝐸 ℏ 2 Where, 1. ϕ(𝑥𝑐+ε)= ϕ(𝑥𝑐−ε) 2. 𝑑ϕ(𝑥) 𝑑𝑥 𝑥𝑐−ε 𝑥𝑐+ε − 2𝑚k0 ℏ 2 ϕ(𝑥𝑐)=0 Analytical Solution possible! Two Unknowns: R & T Quantum Physics: S. Gasiorowicz, John Wiley & Sons. , USA, 1995.
12
N-Dirac Delta Potential Barrier
Four Boundary Conditions k1δ(𝑥−𝑥1) k2δ(𝑥−𝑥2) ϕ(𝑥)= 𝑒 𝑖𝑘𝑥 + R 𝑒 −𝑖𝑘𝑥 ϕ(𝑥)= 𝐴1 𝑒 𝑖𝑘𝑥 + B1 𝑒 −𝑖𝑘𝑥 ϕ(𝑥)= T 𝑒 𝑖𝑘𝑥 x k1δ(𝑥−𝑥1) k2δ(𝑥−𝑥2) k3δ(𝑥−𝑥3) Six Boundary Conditions ϕ(𝑥)= 𝑒 𝑖𝑘𝑥 + R 𝑒 −𝑖𝑘𝑥 A1 , B1 A2 , B2 ϕ(𝑥)= T 𝑒 𝑖𝑘𝑥 x
13
Arbitrary Potential V(x) = N-Dirac Delta Potentials
V(x) = 𝑎 𝑏 𝑉 𝑥𝑖 δ(𝑥−𝑥𝑖)dxi (1) V(x) = 𝑖=1 𝑁 𝑉 𝑥𝑖 δ(𝑥−𝑥𝑖) δx (2) for δx→0 V(x) = 𝑖=1 𝑁 𝑘𝑖 δ 𝑥−𝑥𝑖 (3) where Ki = 𝑉 𝑥𝑖 δx δ(𝑥−𝑥𝑛) δ(𝑥−𝑥1) δ(𝑥−𝑥𝑁) 𝑁= 𝑏−𝑎 δx V(x) Potential Energy x = a x δx x = b
14
Two State Problem: Dirac Delta Coupling
𝐻1(𝑥) V12(x) V21(x) 𝐻2(𝑥) ϕ1(𝑥) ϕ2(𝑥) = E ϕ1(𝑥) ϕ2(𝑥) ϕ2(𝑥)= R 2𝑒 −𝑖𝑘1𝑥 ϕ2(𝑥)= T 2𝑒 𝑖𝑘1𝑥 V2(x) 𝑉12=𝑉21=𝑘0 δ (𝑥−𝑥𝑐) Four Boundary Conditions ϕ1(𝑥)= 𝑒 𝑖𝑘𝑥 + R 1𝑒 −𝑖𝑘𝑥 ϕ1(𝑥)= T 1𝑒 𝑖𝑘𝑥 1. ϕ1(𝑥𝑐+ε)= ϕ1(𝑥𝑐−ε) 2. ϕ2(𝑥𝑐+ε)= ϕ2(𝑥𝑐−ε) V1(x) 3. 𝑑ϕ1(𝑥) 𝑑𝑥 𝑥𝑐−ε 𝑥𝑐+ε − 2𝑚𝑘0 ℏ 2 ϕ2 𝑥𝑐 =0 4. 𝑑ϕ2(𝑥) 𝑑𝑥 𝑥𝑐−ε 𝑥𝑐+ε − 2𝑚𝑘0 ℏ 2 ϕ1 𝑥𝑐 =0 𝑇12=2 𝑘1 𝑘 m k0 k ℏ 2 k k1 ℏ 4 + 𝑚 2 𝑘 Four Unknowns: R1, R2, T1 & T2.
15
𝐻1(𝑥) ϕ1 𝑥 + 𝑘0 2 δ (𝑥−𝑥𝑐) 𝐺 2 0 xc, 𝐸 xc ϕ 1(𝑥) = E ϕ1(𝑥)
Two State Problem: Dirac Delta Coupling V2(x) 𝐻1(𝑥) V12(x) V21(x) 𝐻2(𝑥) ϕ1(𝑥) ϕ2(𝑥) = E ϕ1(𝑥) ϕ2(𝑥) 𝑉12=𝑉21=𝑘0 δ (𝑥−𝑥𝑐) V1(x) 𝑉12=𝑉21=𝑘0 δ (𝑥−𝑥𝑐) 𝐻1(𝑥) ϕ1 𝑥 + 𝑘0 2 δ (𝑥−𝑥𝑐) 𝐺 2 0 xc, 𝐸 xc ϕ 1(𝑥) = E ϕ1(𝑥) Where, 𝐺 2 0 xc, 𝐸 xc = xc| (𝐸−𝐻2) −1 |𝑥𝑐 1. ϕ1(𝑥𝑐+ε)= ϕ1(𝑥𝑐−ε) 2. 𝑑ϕ1(𝑥) 𝑑𝑥 𝑥𝑐−ε 𝑥𝑐+ε − 2𝑚 𝑘0 2 ℏ 𝐺 2 0 xc, ω xc ϕ1 𝑥𝑐 =0 R T R+T≠1 𝑘 𝐺 2 0 xc, 𝐸 xc δ(𝑥−𝑥𝑐) P12 = 1 – (R+T)
16
N- State Problem: Dirac Delta Couplings
V3(x) 𝑉13=𝑉31=𝑘13 δ (𝑥−𝑥𝑑) V2(x) 𝑉12=𝑉21=𝑘12 δ (𝑥−𝑥𝑐) V1(x) 𝐻1(𝑥) ϕ1 𝑥 + 𝑘12 2 δ (𝑥−𝑥𝑐) 𝐺 2 0 xc, 𝐸 xc ϕ 1(𝑥) + 𝑘13 2 δ (𝑥−𝑥𝑑) 𝐺 3 0 xd, 𝐸 x𝑑 ϕ 1(𝑥) = E ϕ1(𝑥) 𝑘 𝐺 2 0 xc, 𝐸 xc δ(𝑥−𝑥𝑐) 𝑘 𝐺 3 0 xd, 𝐸 x𝑑 δ(𝑥−𝑥𝑑) R+T≠1 R T P12 = 1 – (R+T)
17
𝐻1(𝑥) ϕ1 𝑥 + 𝑖=1 𝑁 𝑘𝑖 2 δ (𝑥−𝑥𝑖) 𝐺 2 0 xi, 𝐸 x𝑖 ϕ 1(𝑥) = E ϕ1(𝑥)
Two State Problem: Arbitrary Coupling V2 Potential Energy V1 x k1 δ (𝑥−𝑥1) k2 δ (𝑥−𝑥2) k3 δ(𝑥−𝑥3) k4 δ (𝑥−𝑥4) k5 δ(𝑥−𝑥5) 𝑉12 𝑥 =𝑉21 𝑥 = 𝑖=1 𝑁 𝑘𝑖 δ (𝑥−𝑥𝑖) 𝐻1(𝑥) ϕ1 𝑥 𝑖=1 𝑁 𝑘𝑖 2 δ (𝑥−𝑥𝑖) 𝐺 2 0 xi, 𝐸 x𝑖 ϕ 1(𝑥) = E ϕ1(𝑥)
18
Multi State Problem: Arbitrary Coupling
V3 Potential Energy V2 V1 x k1 δ (𝑥−𝑥1) k2 δ (𝑥−𝑥2) k3 δ(𝑥−𝑥3) k4 δ (𝑥−𝑥4) k5 δ(𝑥−𝑥5) 𝑉12 𝑥 =𝑉21 𝑥 = 𝑖=1 𝑁 𝑘𝑖 δ (𝑥−𝑥𝑖) 𝑉13 𝑥 =𝑉31 𝑥 = 𝑗=1 𝑁 𝑘𝑗 δ (𝑥−𝑥𝑗) 𝐻1(𝑥) ϕ1 𝑥 𝑖=1 𝑁 𝑘𝑖 2 δ (𝑥−𝑥𝑖) 𝐺 2 0 xi, 𝐸 x𝑖 ϕ 1(𝑥) + 𝑗=1 𝑁 𝑘𝑗 2 δ (𝑥−𝑥𝑗) 𝐺 3 0 xj, 𝐸 x𝑗 ϕ 1(𝑥) = E ϕ1(𝑥)
19
Time dependent Schr 𝒐 dinger Equation
Quantum (Schr 𝑜 dinger Eqn.) 𝑘0 δ (𝑥−𝑥𝑐) 𝑖 𝜕Ψ(𝑥,𝑡) 𝜕𝑡 =𝐻 Ψ(𝑥,𝑡) Potential Energy where, H = − ℏ 2 2𝑚 𝜕 2 𝜕 𝑥 2 +𝑘0 δ (𝑥−𝑥𝑐) Ψ 𝒙,𝟎 x IF Ψ 𝒙,𝟎 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛, 𝑤ℎ𝑎𝑡 𝑖𝑠 Ψ 𝒙,𝒕 ? Ψ 𝒙,𝒔 ?
20
Solution for 𝑘0 δ(𝑥) i 𝜕 Ψ(𝑥,𝑡) 𝜕𝑡 =− 𝜕 2 𝛹 𝑥,𝑡 𝜕 𝑥 2 +𝑘0δ 𝑥 Ψ 𝑥,𝑡 (1)
Ψ 𝒙,𝒔 = a(s) exp(i 𝑖𝑠 |x|) 𝑖𝑠 −∞ ∞ 𝑑𝑥0 exp(i 𝑖𝑠 |x-x0|) Ψ 𝑥0, (4) 𝜕 Ψ 𝒙,𝒔 𝜕𝑥 0−ε 0+ε −𝑘0 Ψ 𝟎,𝒔 = (5) 𝑎 𝑠 = 𝑘0 Ψ 𝟎,𝒔 2𝑖 𝑖𝑠 (6)
21
Solution for 𝑘0 δ(𝑥) Ψ 𝒙,𝒔 = 𝑘0 Ψ 𝟎,𝒔 2𝑖 𝑖𝑠 exp(i 𝑖𝑠 |x|) 𝑖𝑠 −∞ ∞ 𝑑𝑥0 exp(i 𝑖𝑠 |x-x0|) Ψ 𝑥0, (7) Put x = 0 Ψ 𝟎,𝒔 = 𝑘0 Ψ 𝟎,𝒔 2𝑖 𝑖𝑠 𝑖𝑠 −∞ ∞ 𝑑𝑥0 exp(i 𝑖𝑠 |x0|) Ψ 𝑥0, (8) Ψ 𝟎,𝒔 = 𝑖 2𝑖 𝑖𝑠 −𝑘0 −∞ ∞ 𝑑𝑥0 exp(i 𝑖𝑠 |x0|) Ψ 𝑥0, (9)
22
Two State Problem: Dirac Delta Coupling
V2(x) i 𝜕 𝜕𝑡 Ψ1(𝑥,𝑡) Ψ2(𝑥,𝑡) = 𝐻1(𝑥) V12(x) V21(x) 𝐻2(𝑥) Ψ1(𝑥,𝑡) Ψ2(𝑥,𝑡) 𝑉12=𝑉21=𝑘0 δ (𝑥−𝑥𝑐) Ψ𝟏 𝒙,𝟎 V1(x) ϕ2 (𝑥,0)=0 𝑉12=𝑉21=𝑘12 δ (𝑥−𝑥𝑐) i s ϕ 𝟏 (𝒙,𝒔) =𝐻1(𝑥) ϕ 𝟏 (𝒙,𝒔) + 𝑘0 2 δ 𝑥−𝑥𝑐 𝐺 2 0 xc, 𝑖𝑠 x𝒄 ϕ 𝟏 𝒙,𝒔 +𝑖 ϕ1(𝑥,0) 𝑘0 2 𝐺 2 0 xc, 𝑖𝑠 x𝒄 δ (𝑥−𝑥𝑐) Ψ𝟏 𝒙,𝟎 Where, 𝐺 2 0 xc, 𝑖𝑠 xc = xc| (𝑖𝑠−𝐻2) −1 |𝑥𝑐 V1(x)
23
Schr 𝒐 dinger Eqn. with time dependent Dirac Delta potential
Ψ 𝒙,𝒔 = a(s) exp(i 𝑖𝑠 |x|) 𝑖𝑠 −∞ ∞ 𝑑𝑥0 exp(i 𝑖𝑠 |x-x0|) Ψ 𝑥0, (4) 𝜕 Ψ 𝒙,𝒔 𝜕𝑥 0−ε 0+ε −𝑳 𝑘 𝑡 Ψ 0,𝑡 = (5) 𝑎 𝑠 = 𝑳 𝑘 𝑡 Ψ 0,𝑡 2𝑖 𝑖𝑠 (6)
24
Schr 𝒐 dinger Eqn. with time dependent Dirac Delta potential
𝑽 𝒙,𝒕 =𝒌(𝒕) 𝜹(𝒙−𝒙𝒄) K(t) = a t K(t) = a/t K(t) = a 𝒆 −𝒃𝒕 K(t) = a Exp[i ω t ]
25
Solution for k(t) = k0t Ψ 𝒙,𝒔 = a(s) exp(i 𝑖𝑠 |x|) 𝑖𝑠 −∞ ∞ 𝑑𝑥0 exp(i 𝑖𝑠 |x-x0|) Ψ 𝑥0, (4) 𝑎 𝑠 =− 𝑘0 2𝑖 𝑖𝑠 𝜕 𝑃 𝟎,𝒔 𝜕𝑠 (7) Ψ 𝒙,𝒔 = - 𝑘0 2𝑖 𝑖 𝑠 exp(- 𝑠 |x|) 𝜕 Ψ 𝟎,𝒔 𝜕𝑠 𝑠 𝑑𝑥0 exp(- 𝑠 |x-x0|) Ψ 𝑥0, (8) Put x = 0 Ψ 𝟎,𝒔 = - 𝑘0 2𝑖 𝑖 𝑠 𝜕 Ψ 𝟎,𝒔 𝜕𝑠 𝑠 𝑑𝑥0 exp(- 𝑠 |x0|) Ψ 𝑥0, (9)
26
Schr 𝒐 dinger Equation with moving Dirac Delta Potential
𝑖 𝜕 Ψ(𝑥,𝑡) 𝜕𝑡 =− ℏ2 2𝑚 𝜕 2 Ψ 𝑥,𝑡 𝜕 𝑥 2 +𝑘0 δ[𝑥 −𝑎 𝐿0+𝑣𝑡 ]Ψ 𝑥,𝑡 Phys. Rev. A. 65, (2002). 1. y = 𝑥 𝐿(𝑡) ; L(t)= L0 + v t 2. Ψ 𝑦,𝑡 = 1 𝐿(𝑡) exp[𝑖 𝑚 2ℏ 𝐿 𝑡 𝑣 𝑦 2 ]Φ 𝑦,𝑇 3. T = 𝑡 𝐿0𝐿(𝑡) 𝑖 𝜕 Φ(𝑦,𝑇) 𝜕𝑇 =− ℏ 2 2𝑚 𝜕 2 Φ 𝑦,𝑇 𝜕 𝑦 2 +𝑘0 δ(y −𝑎)Φ 𝑦,𝑇
27
Two state problem with moving Dirac Delta Coupling
𝑖 𝜕 𝜕𝑡 Ψ1(𝑥,𝑡) Ψ2(𝑥,𝑡) = 𝐻1(𝑥) 𝑘0 δ (𝑥−𝑣𝑡) 𝑘0 δ (𝑥−𝑣𝑡) 𝐻2(𝑥) Ψ1(𝑥,𝑡) Ψ2(𝑥,𝑡) i 𝜕 𝜕𝑇 Ψ1(𝑦,𝑇) Ψ2(𝑦,𝑇) = 𝐻1(𝑦) 𝑘0δ(𝑦−𝑎) 𝑘0δ(𝑦−𝑎) 𝐻2(𝑦) Ψ1(𝑦,𝑇) Ψ2(𝑦,𝑇) Ψ1(𝑥,0) 𝑘0 δ (𝑥−𝑣𝑡)
28
Quantum Mechanics Statistical Mechanics
Quantum (Schr 𝑜 dinger Equation) Diffusion (Smoluchowski Equation) 𝑖 𝜕Ψ(𝑥,𝑡) 𝜕𝑡 =𝐻 Ψ(𝑥,𝑡) 𝜕 𝑃(𝑥,𝑡) 𝜕𝑡 = L(x) 𝑃(𝑥,𝑡) where, H = − ℏ 2 2𝑚 𝜕 2 𝜕 𝑥 2 +𝑉(𝑥) where, L(x)=𝐴 𝜕 2 𝜕 𝑥 2 +𝐵 𝜕 𝜕𝑥 𝑑𝑉(𝑥) 𝑑𝑥 Ψ (x,t) P(x,t) − ℏ 2 2𝑚 A 𝑉 𝑥 −−−−−− 𝐵 𝜕 𝜕𝑥 𝑑𝑉(𝑥) 𝑑𝑥 i
29
Two state Problems in Statistical Mechanics
𝜕 𝑃(𝑥,𝑡) 𝜕𝑡 = L(x) 𝑃(𝑥,𝑡) 𝑖 𝜕Ψ(𝑥,𝑡) 𝜕𝑡 =𝐻 Ψ(𝑥,𝑡) where, L(x) = 𝐿1(𝑥) 𝑉12(𝑥) 𝑉21(𝑥) 𝐿2(𝑥) where, H = 𝐻1(𝑥) 𝑉12(𝑥) 𝑉21(𝑥) 𝐻2(𝑥) P(𝑥,𝑡) = 𝑃1(𝑥,𝑡) 𝑃2(𝑥,𝑡) Ψ(𝑥,𝑡) = ϕ1(𝑥,𝑡) ϕ2(𝑥,𝑡) where, Li(x)=𝐴 𝜕 2 𝜕 𝑥 2 +𝐵 𝜕 𝜕𝑥 𝑑𝑉𝑖(𝑥) 𝑑𝑥 Hi = − ℏ 2 2𝑚 𝜕 2 𝜕 𝑥 2 +𝑉𝑖(𝑥)
30
Current Research: Inverse Problem
𝑉 𝑥 = 𝑖=1 𝑁 𝑘𝑖 δ (𝑥−𝑥𝑖) Arbitrary Potential Collection of Dirac Delta Potentials x x T(E) E
31
Current Research: Polymer cyclization in Solution
x X : End to End Distance Smoluchowski Equation for a long polymer with time dependent sink k(t) δ (𝑥−𝑎)
32
References Curve crossing effects on absorption & resonance Raman spectrum:A. Chakraborty, Mol. Phys. 107,165 (2009). Multi-channel curve crossing problems: Analytically solvable model: A. Chakraborty, Mol. Phys. 107, 2459 (2009). Curve crossing problem with arbitrary coupling: Analytically solvable model, Diwaker & A. Chakraborty, Mol. Phys., 110, 2197 ( 2012). Multi-channel scattering problems: Analytically solvable model: Diwaker & A. Chakraborty, Mol. Phys., 110, 2257 (2012). Nonadiabatic tunneling in an ideal one dimensional semi-infinite periodic potential systems: A.Chakraborty, Mol. Phys. 109, 429 (2011). Barrierless electronic relaxation in solution: An analytically solvable model.: A. Chakraborty, J. Chem. Phys., 139, (2013). Transfer Matrix approach to curve crossing problems of two exponential potentials, Diwaker & A. Chakraborty, Mol. Phys., 113, 3406 (2015). Exact Solution to curve crossing problems of two diabatic potentials by transfer matrix method: Diwaker & A. Chakraborty, Mol. Phys., 113, 3909 (2015). Long range electron transfer reactions in solution: Diwaker & A. Chakraborty, Chem. Phys., 459, 19 (2015). Exact Solution of time dependent Schrodinger equation for two state problem: Diwaker & A. Chakraborty, Chem. Phys. Lett., 638, 133 (2015). Exact solution of Schrodinger equation for two state problem with time dependent coupling: Diwaker, B. Panda & A. Chakraborty, Physica A, 442, 380 (2016). Curve crossing induced dissociation: An Analytical model, Diwaker & A. Chakraborty, Spectrochemica. Acta A, 151, 510 (2015). Exact solution of Smoluchowski equation for linear potential with time dependent sink, Diwaker & A. Chakraborty, J. Exp. Theo. Phys., 149, 439 (2016). Barrierless Chemical Reactions in solution: An analytically solvable model. Diwaker & A. Chakraborty, Phys. Rev. E (under revision). Exact solution of Schrodinger equation for two state problem with a moving Dirac Delta potential coupling: Diwaker & A. Chakraborty, Chem. Phys. (under revision). Multichannel electron transfer reactions in solution: An analytically solvable model : Diwaker & A. Chakraborty, J. Stat. Phys. (under revision). Seed Grant from IIT Mandi, Himachal Pradesh, India, Rs: 4,80,000/-.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.