Presentation is loading. Please wait.

Presentation is loading. Please wait.

Qingguo Xie1,2, Chien-Min Kao1, Xi Wang2, Ning Guo2,

Similar presentations


Presentation on theme: "Qingguo Xie1,2, Chien-Min Kao1, Xi Wang2, Ning Guo2,"— Presentation transcript:

1 Potential Advantages of Digitally Sampling Scintillation Pulses in Timing Determination in PET
Qingguo Xie1,2, Chien-Min Kao1, Xi Wang2, Ning Guo2, Caigang Zhu2, Henry Frisch3, William W. Moses4, and C.-T. Chen1 1Department of Radiology, The University of Chicago, Chicago, IL, USA 2Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China 3Enrico Fermi Institute, The University of Chicago, Chicago, IL, USA 4Lawrence Berkeley National Laboratory, Berkeley, California, USA

2 Pulse Library LSO/PMT (Bill’s Module)

3 Pulse Library LSO/PMT (Bill’s Module)

4 Pulse Library LSO/PMT (Bill’s Module)

5 Pulse Library LSO/PMT Sample Pulse @ 511keV

6 Pulse Library HRRT Module
The HRRT detector head contains an array of 9 by 13 crystal blocks that are coupled to an array of 10 by 14 photomultiplier tubes (PMTs) by using the PMT-quadrant-sharing configuration (PQS). Each crystal block of the HRRT is made of 8x8 double-layered LSO/LYSO phoswich scintillators.

7 Pulse Library HRRT Module
HRRT Detector Heads The prototype consists of two HRRT (High Resolution Research Tomograph) detector heads. The spacing between detectors shown is ~6 cm, which is adequate for imaging rodents. A single double-layered, 8 x 8 LSO crystal block affixes onto 4 photomultiplier tubes in the quadrant-sharing configuration.

8 Pulse Library HRRT Module Sample Pulse @ 511keV

9 Pulse Library HRRT Module Sample Pulse @ 511keV

10 Pulse Library LYSO/MPPC

11 An MPPC having 100 microcells Hamamatsu S10362-11-100C Sample 171
MPPC Principle Equivalent circuit An MPPC having 100 microcells Hamamatsu S C Sample 171

12 Pulse Library LYSO/MPPC Sample Pulse @ 511keV
50-mm

13 Datasets Dataset 1 Dataset 2 Bill’s Module 1500 pulses LLD:~370keV

14 Energy Histogram Dataset 2

15 Energy Histogram Dataset 2

16 Average Pulses Ch1 (1621 pulse pairs)

17 Average Pulses Ch1 Averaged Pulse

18 Average Pulses Ch1 Noise Variance

19 Average Pulses Ch1 Noise Standard Deviation

20 Average Pulses Ch1 Noise sum{|Nx|}

21 Average Pulses Ch2 Averaged Pulse (1731 pulse pairs)

22 Average Pulses Dataset 1

23 Average Pulses Dataset 1

24 Multi-threshold Time Picking-up

25 Coincidence Timing Resolution 350 keV, 4 Thresholds, 312 ps FWHM
4Thresholds, FWHM=312ps Threshold_Ch2=40mv, 90mv, 140mv, 190mv Threshold_Ch1= 216/267*Threshold_Ch2

26 Coincidence Timing Resolution 350 keV, 6 Thresholds, 296 ps FWHM
6 Thresholds, FWHM=296ps Threshold_Ch2=40mv, 70mv, 100mv, 130mv, 160mv, 190mv Threshold_Ch1= 216/267*Threshold_Ch2

27 Coincidence Timing Resolution 350 keV, 8 Thresholds, 291 ps FWHM
8 Thresholds, FWHM=291ps Threshold_Ch2=40mv, 60mv, 80mv, 100mv, 120mv, 140mv, 160mv, 180mv Threshold_Ch1= 216/267*Threshold_Ch2

28 Coincidence Timing Resolution 350keV and 400keV
# Thresholds 350keV 400keV ps 304ps ps 288ps ps 283ps Dataset 2: 350keV, 3579 pulse pairs 400keV, 3140 pulse pairs

29 Coincidence Timing Resolution 4 Thresholds

30 Coincidence Timing Resolution 6 Thresholds

31 Coincidence Timing Resolution 8 Thresholds

32 Coincidence Timing Resolution Energy Groups
Ch2 En1 En2 En3 Ch1 En ps 305ps 303ps En ps 293ps 283ps En ps 295ps 250ps En1: En2: (+-5%) En3: >536

33 Coincidence Timing Resolution Fixed Time Digitized Pulse Fitting

34 Coincidence Timing Resolution Fixed Time Digitized Pulse Fitting

35 Coincidence Timing Resolution CFD
TH FWHM 085keV 341ps 175keV 313ps 350keV 297ps

36 Coincidence Timing Resolution Software CFD
~ , 1.6ns for 370keV using dataset 1

37 System Block Digitized pulse

38 System Block Digitized pulse

39 Discussion Timing resolution obtained from digitized pulses is comparable to analog CFD. Efficient calibration, especially system level for TOF PET Benefits for PET: Position, Energy, Time, and Count-rate Advanced algorithms Dependence between shapes and scintillators, energy (Average Pulse Fitting, slightly better timing resolution, pulse simulation, Monte Carlo, pattern reconzation) Noise pattern

40 Acknowledgement Collaborators: Bo Zhang Robert Wagner Gary Drake
John Anderson Camden D. Ertley Jean Francois Patrick LeDu Christophe Royon Joy Lin Octavia Fukun Tang Seungryong Cho Jeffrey S. Souris Qian Zhang Shuijin Su Zheng Tian


Download ppt "Qingguo Xie1,2, Chien-Min Kao1, Xi Wang2, Ning Guo2,"

Similar presentations


Ads by Google