Presentation is loading. Please wait.

Presentation is loading. Please wait.

Space-Based Imaging Spectroscopy of Soil Contamination

Similar presentations


Presentation on theme: "Space-Based Imaging Spectroscopy of Soil Contamination"— Presentation transcript:

1 Space-Based Imaging Spectroscopy of Soil Contamination
Authors: Asa Gholizadeh, Mohammadmehdi Saberioon, Eyal Ben-Dor, Luboš Borůvka Contact: Space-Based Imaging Spectroscopy of Soil Contamination Proximal Sensing of Soil Contamination Soil Contamination Natural Gas Petroleum Hydrocarbons Potentially Toxic Elements (PTEs) Table 1: PTEs content (mg/kg) Location As Mn Zn Cu Cr Ni Pb Cd Douro, Portugal 38.3 139 57 36.5 92.3 21.4 30.8 0.2 Pokrok, Czech Republic 4.48 599 25.2 13.7 - 18.4 0.27 Smolnica, Poland 142 18 39.9 1.65 Sonepur, India 3.96 947 27 98 34 27.3 0.012 Figure 1: Correlation between reflectance of VIS-NIR-SWIR and PTEs Gholizadeh et al. (2015) PTEs As: Arsenic, Mn: Manganese, Zn: Zinc, Cu: Copper, Cr: Chromium, Ni: Nickel, Pb: Lead, Cd: Cadmium Remote Sensing of Soil Contamination Unmanned Aerial Vehicles (UAVs) Airborne Sensors Spaceborne Sensors Unmanned Aerial Vehicles (UAVs) Aerial Sensors Table 2: UAVs Advantages and Disadvantages Table 3: Technical specifications of some airborne sensors Advantages Disadvantages Safety in operation Lack of collision avoidance technology High temporal and spatial resolution data Specialist expertise required Programmatic flexibility Small scale of operation Economic cost Legal constraints Environmental friendly Sensor Spectral range (nm) Channels (no.) Spectral bandwidth (nm) Spatial resolution (nm) Swath (km) SNR HyMap 128 10-20 2-10 > 500:1 AISA 807 3.3-12 1 > :1 AVIRIS 227 10 30 7.5 CASI 288 1-4 1.6 > 200:1 Rossi and Brunelli (2015) Mochammad et al. (2016) Chinchu et a l. (2017) Choe et al. (2008) Van der Werff et al. (2008) PTEs Petroleum hydrocarbons Natural gas leakage Spaceborne Sensors Advantages: Comprehensive monitoring of large-scale sites, Availability of high quality temporal images, Data reduction, SNR improvements, Better classification of results Kopackova et al. (2012) used ASTER to monitor PTEs Arellano et al. (2015) used Hyperion to monitor oil and metal Figure 4: SHALOM coverage area Table 4: HyspIRI TIR bands Figure 3: EnMAP operating principles Figure 2: Sentinel-2 bands TIR Bands λ (nm) Δλ (nm) 1 3980 80 2 7350 320 3 8280 340 4 8630 350 5 9070 360 6 10530 540 7 11330 8 12050 520 Spectral range: VIS-NIR-SWIR Spectral bands: 241 GSD: 10 m Swath: 10 km Revisiting time: 4 days Spectral range: VIS-NIR-SWIR Spectral bands: 214 GSD: 60 m Swath: 145 km Revisiting time: 19 days Spectral range: VIS-NIR-SWIR Spectral bands: 242 GSD: 30 m Swath: 30 km Revisiting time: 27 days Spectral range: VIS-NIR-SWIR Spectral bands: 13 GSD: 10 m, 20 m, 60 m Swath: 290 km Revisiting time: 5 days Kokaly et al. (2013) used synthesized image for mapping hydrocarbons. Feingersh and Ben-Dor (2016) introduced it suitable for soil contamination assessment. Mielke et al. (2014) used synthesized image for mapping of U, Pb, and Cr. Rogge et al. (2014) used synthesized image for mapping of Ni, Cu, and Pt. Mielke et al. (2014) used synthesized image for mapping of U, Pb, and Cr. References Conclusions Arellano, P., Tansey, K., Balzter, H., Boyd, D.S., Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environ. Pollu. 205, Chinchu, V.J., Sheela, K.G., Manu, A., Implementation of gas detection system using unmanned moving vehicle. Int. Adv. Res. J. Sci. Eng. Technol. 4(2), Feingersh, T., Ben-Dor, E., SHALOM- A commercial hyperspectral space mission, in: Qian, S.E. (Ed.), Optical Payloads for Space Missions, J. Wiley & Sons Inc., New York. Gholizadeh, A., Boruvka, L., Vasat, R., Saberioon, M.M., Klement, A., Kratina, J., Tejnecky, V., Drabek, O., Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy: A case study. PLoS ONE. 10(2), e Mielke, C., Boesche, N.K., Rogass, C., Kaufmann, H., Gauert, C., de Wit, M., Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern Push-Broom missions: Hyperion/OLI and EnMAP/Sentinel-2. Remote Sens. 6(8), Forthcoming innovative remote sensing space sensors provides: Precision mapping and monitoring of soil contaminants. Larger spatial coverage, short revisit time, and more frequent area coverage. A major step towards global soil surface mapping from space. Better timing of the acquisition and improvement of the results classification. Dense time series. *Background Image: Dasht-e-Kavir Mineralogy, Iran, Modified Copernicus Sentinel Data


Download ppt "Space-Based Imaging Spectroscopy of Soil Contamination"

Similar presentations


Ads by Google