Download presentation
Presentation is loading. Please wait.
Published byLee George Modified over 6 years ago
1
ماشین های تورینگ، تشخیص پذیری و تصمیم پذیری زبان ها
جلسات حل تمرین نظریه زبان ها و ماشین ها دانشگاه صنعتی شریف بهار 87
2
Enumerators Show that a language is decidable iff some enumerator enumerates the language in lexicographic order. Show that every infinite recognizable language has an infinite decidable language as a subset.
3
طراحی تصمیم گیر
4
زبان های مکمل-تشخیص پذیر(co-recognizable)
5
زبان های تصمیم پذیر
6
زبان های تصمیم پذیر M is a Turing machine
Does M take more than k steps on input x? Does M take more than k steps on some input? Does M take more than k steps on all inputs? Does M ever move the tape head more than k cells away from the starting position?
7
زبان های تصمیم پذیر {M: M is the description of a Turing machine and L(M) is a Turing recognizable language}
8
زبان های تصمیم ناپذیر
9
زبان های تشخیص ناپذیر
10
زبان های تشخیص ناپذیر Consider the following language L:
L = { <M> | for every input string w, M will halt within 1000|w|2 steps } Show that this language is not recognizable. (Reduce from ~ATM.) complement of
11
طراحی تشخیص دهنده
12
Close look to the formal definition of a TM
Exercise 3.5: Can a Turing machine ever write the blank symbol on its tape? Can the tape alphabet be the same as the input alphabet? Can a Turing machine's read head ever be in the same location in two successive steps? Can a Turing machine contain just a single state?
13
خواص بسته بودن زبان های تشخیص پذیر: اجتماع اشتراک تکرار(*) الحاق
زبان های تصمیم پذیر مکمل گیری
14
Robustness doubly infinite tape k-stack PDAs (k>1)
A Turing machine with only RIGHT and RESET moves Cyclical Turing machine A queue automaton 2(k) head Turing machine Turing machine with k-dimensional tape A single tape TM not allowed to change the input -> regular language Only Right and Stay Put moves -> regular language
15
Clue to the Solution: input-read-only TM
At most the last |Q| squares of input on tape can be determining. Myhill-Nerode theorem if a language L partitions ∑* into a finite number of equivalence classes then L is regular. See:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.