Download presentation
Presentation is loading. Please wait.
1
A practical guide to learning Autoencoders
Dr. Debdoot Sheet Assistant Professor, Department of Electrical Engineering Principal Investigator, Kharagpur Learning, Imaging and Visualization Group Indian Institute of Technology Kharagpur
2
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Contents Introductory concepts Simple neuron Neural network formulation Learning with error backpropagation Gradient checking and optimization Unsupervised pre-training Autoencoder Denoising autoencoders Sparsity in autoencoders Stacked autoencoder Supervised refinement Stacked denoising autoencoders (SDAE) – Deep neural network (DNN) 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
3
Introductory concepts
11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
4
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Simple Neuron Model 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
5
Neural Network Formulation
11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
6
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Error in Prediction 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
7
Error Backpropagation
11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
8
Gradient Descent Learning
Cost-function Epochs 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
9
Understanding Gradient Descent
Some random initial value Cost-function Epochs 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
10
Unsupervised pre-training
11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
11
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
12
Denoising Autoencoder
11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
13
Sparsity in Autoencoder
11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
14
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Stacked Autoencoders 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
15
Supervised Refinement
11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
16
Deep Neural Network Denoising Auto Encoder Denoising Auto Encoder
Logistic Reg. 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
17
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Weight Refinement 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
18
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Practical exampleS 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
19
Demystifying Autoencoders
Dr. Debdoot Sheet Assistant Professor, Department of Electrical Engineering Principal Investigator, Kharagpur Learning, Imaging and Visualization Group Indian Institute of Technology Kharagpur
20
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Contents Handwritten Digits Recognition Organ Detection in 4D MRI OCT Tissue Characterization Retinal Vessel Segmentation 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
21
Handwritten Digit Recognition
Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion." The Journal of Machine Learning Research 11 (2010): Handwritten Digit Recognition 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
22
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
About the Challenge MNIST Handwritten digit recognition challenge Train set 60,000 samples Test set 10,000 samples Patch size 28 x 28 pixels uint8 gray valued Binary images 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
23
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Interpreting Weights 0% Noise added 25% Noise added 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
24
Dynamics of Weights with Noise
Neuron A Neuron B 0% 10% 20% 50% 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
25
Appearance Model Variations
11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
26
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Performance Metrics 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
27
Organ Detection in 4D MRI
Shin, Hoo-Chang, et al. "Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data.“ IEEE Trans. Pattern Analysis and Machine Intelligence, 35.8 (2013): Organ Detection in 4D MRI 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
28
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
About the Challenge Dataset A: 256 x 256 images, 7-12 contiguous coronal slices, 40 temporal points, Patients # 46 Dataset B: 256 x 247 images, 14 contiguous coronal slices, 40 temporal points, Patients # 3 Dataset C: 209 x 256 images, 12 contiguous coronal slices, 40 temporal points, Patients # 29 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
29
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
The Autoencoder Model 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
30
Learnt Representations
Input image Weights in first layer Class predictions 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
31
OCT Tissue Characterization
Sheet, Debdoot, et al. "Deep learning of tissue specific speckle representations in optical coherence tomography and deeper exploration for in situ histology.“ IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015. OCT Tissue Characterization 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
32
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
About the Challenge Data Collection School of Medical Science and Technology, Indian Institute of Technology Kharagpur 1300 nm (HPBW 100 nm) Swept Source OCT System OCS 1300 SS, ThorLabs, NJ, USA 8 bit bitmap images Histology for ground truth HE stained Samples Mus musculus (small mice) 16 healthy skin 2 wounds on skin DNN architecture Patch size – 36 × 36 px DAE1 – 400 nodes DAE2 – 100 nodes Target – Logistic Reg. 5 outputs Sparsity – 20% Mini-batch training In situ Histology Performance Epithelium – 96% Papillary dermis – 93% Dermis – 99% Adipose tissue – 98% 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
33
Unfurling the Deep Network
11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
34
Learning of Representations
Sparsity of representations learned by DAE2 Representation of speckle appearance models learned by DAE1 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
35
Retinal Vessel Segmentation
Maji, Debapriya; Santara, Anirban, et al. "Deep Neural Network and Random Forest Hybrid Architecture for Learning to Detect Retinal Vessels in Fundus Images.“ 34th Annual Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015. Retinal Vessel Segmentation 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
36
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
About the Challenge Images Color Fundus 563 x 582 pixels Train set 20 images Test set 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
37
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
About the Hybrid Model 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
38
Train Patterns and Weights
DNN (SAE) weights Layer 1 Layer 2 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
39
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Performances 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
40
Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Take Home Messages LeCunn, Yan, et al. “Deep Learning.” Nature, 521 (2015): Bengio, Yoshua, Aaron Courville, and Pierre Vincent. "Representation learning: A review and new perspectives." IEEE Trans. Pattern Analysis and Machine Intelligence, 35.8 (2013): Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion." The Journal of Machine Learning Research, 11 (2010): 11 May 2016 Autoencoders (Practical Guide and Demystifying) / Debdoot Sheet
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.