Download presentation
Presentation is loading. Please wait.
Published byHomer Lawson Modified over 6 years ago
1
Multiwavelength spectroscopy of high accretion rate polars
Axel Schwope Astrophysical Institute Potsdam Justus Vogel, Robert Schwarz (AIP) Fred Walter (SUNY) Vadim Burwitz (MPE) Klaus Reinsch (Göttingen)
2
Polars – magnetic CVs main sequence secondary magnetic white dwarf
accretion stream/curtain magnetic field (10 – 200 MG) synchronous rotation no disk cyclotron cooling ~80 systems known High/low states
3
Accretion scenarios 3) particle heating hard X-ray supressed (low mass flow rate plus high B field) 1 2 Standard – stationary soft and hard X-rays balanced Filamentary – instationary soft X-ray excess (high mass flow rate and/or low magnetic field)
4
Issues for XMM/Chandra
Temperature and density structure of accretion column (if there is one) X-ray line diagnostic
5
Line diagnostics in AM Her (Girish et al 2007)
6
Issues for XMM/Chandra
Temperature and density structure of accretion column (if there is one) X-ray line diagnostic Structure of accretion regions eclipsing systems
7
HU Aqr: fit to X-ray and UV-light curves (Schwope+01)
Eclipse resolved Q ~ 3o l ~ 450 km h ~ Rwd ~ 120 km
8
XMM-Newton observation of HU Aqr (May 17, 2002)
Schwope et al 2004, ASP
9
HU Aqr: Simultaneous observations XMM & VLT(ULTRACAM) 16.5.2005
VLT-UT3 (ULTRACAM g) XMM EPIC pn Schwarz et al 2008, A&A
10
Issues for XMM/Chandra
Temperature and density structure of accretion column (if there is one) X-ray line diagnostic Extent of emission region eclipsing systems Heating and cooling as a function of mass accretion rate SED of bright systems
11
SEDs – hydro and particle picture
Shock heating Specific mass flow rate (B, Mwd, geometry, ...) Particle heating Beuermann 2004 Fischer & Beuermann 2001
12
High accretion rate polars
Duty cycle ~ 50% (cf. Ramsay et al 2004) The XMM-Newton conspiracy NONE of the ‚classical‘ bright polars was observed in a high accretion state XMM triggers (V834 Cen AO5, VV Pup AO6)
13
VV Pup – the soft X-ray machine
Schwope et al 1995 Patterson et al 1984 Porb = 100 min Two-pole geometry soft main pole less soft secondary pole spectral evolution through bright phase (shoulder)
14
VV Pup – the soft X-ray machine?
MSSL polar survey Weak instationary accretion Thermal plasma ~4keV (Pandel et al 2005)
15
VV Pup SMARTS optical monitoring
16
Simultaneous optical-UV-X observation of VV Pup Oct 20, 2007
17
VV Pup – multi-epoch optical and X-ray light curves
18
SED – low state . HST (Araujo-Betancor+05) XMM/OM (Pandel+05)
VLT (Mason+07) .
19
High state, main pole: cyclotron = (bright – faint)
kTcyc ~ 10 keV Fcyc ~ 2e-11 cgs
20
High state, bright phase X-ray spectrum
bbody (30eV)+mekal(12keV) need warm absorber don‘t need abs, reflect (?)
21
VV Pup – high & low state high-energy SED
Main pole XMM: kT ~ 12 keV, 4e-12 cgs ROSAT/EUVE: ~ 8e-12 cgs Second pole XMM: kT ~ 4 keV, 4e-13 cgs ROSAT/EUVE: ~ 2e-13 cgs Low state XMM: kT ~ 4 keV, 5e-14 cgs ROSAT/EUVE: ---
22
VV Pup – high state SED FUSE EUVE ROSAT EPIC RGS EINSTEIN ROSAT & EUVE agree, EINSTEIN high Lx ruled out by FUSE Both poles in ROSAT brighter than in XMM epoch
23
VV Pup results Spectra (!) for low states and faint phases
T evolution: Shock vs particle heating High state SED always dominated by soft X-rays at both poles additonal blob heating Low state: No soft component observed
24
V834 Cen – multispectral data Jan 31, 2007
25
V834 Cen viewing geometry and multispectral light curves
26
V834 Cen – non-dip spectrum
wabs*absori (bbody(25eV) + mekal_cool(<1keV) + mekal_hot(12keV)) need reflection
27
V834 Cen – SED kT (cyc)~ 10 keV Fcyc ~ 1e-11 cgs
28
V834 Cen – SED through high and low states
29
SED results Pole B (MG) F-bol cgs Fsoft / (Ftp + Fcyc) cgs 100%
V834 Cen low state 22 2e-10 >5e-14 / ? / VV P1 X R 31 5e-10 3e-10 / / VV P2 X R 56 <e-11 2e-12 < / / VV low ~5e-13 ? /
30
Spectral energy distribution: 2XMMp1312+1736 Vogel+08, astroph 0804
31
Conclusions and outlook
SED fitting: relevance of multi-spectral data Evolution of spectral parameters for given pole Evolution of channels of energy release as a function of mass flow rate, B, Mwd and ? Further insight from phase-resolved X-ray spectral analysis And yes, we need more data and we do support XEUS (X-ray Doppler tomography)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.