Presentation is loading. Please wait.

Presentation is loading. Please wait.

Inequalities โ€“ Learning Outcomes

Similar presentations


Presentation on theme: "Inequalities โ€“ Learning Outcomes"โ€” Presentation transcript:

1 Inequalities โ€“ Learning Outcomes
pg Inequalities โ€“ Learning Outcomes Use graphic, numeric, algebraic, and mental strategies to solve inequalities of the form: ๐‘Ž ๐‘ฅ 2 +๐‘๐‘ฅ+๐‘โ‰ค๐‘˜ (or โ‰ฅ, <, >) ๐‘Ž๐‘ฅ+๐‘ ๐‘๐‘ฅ+๐‘‘ โ‰ค๐‘˜ (or โ‰ฅ, <, >) Use modulus notation Solve inequalities of the form ๐‘ฅโˆ’๐‘Ž <๐‘ (or >)

2 Use Graphic Strategies
pg Use Graphic Strategies Given the function ๐‘“ ๐‘ฅ =3๐‘ฅโˆ’2, Plot a graph of ๐‘“ ๐‘ฅ in the domain โˆ’3โ‰ค๐‘ฅโ‰ค3. Use your graph to solve the inequality ๐‘“(๐‘ฅ)โ‰ค0. Given the function ๐‘” ๐‘ฅ = 4๐‘ฅ 3 +1, Plot a graph of ๐‘”(๐‘ฅ) in the domain โˆ’6โ‰ค๐‘ฅโ‰คโˆ’2. Use your graph to solve the inequality ๐‘” ๐‘ฅ <0. Given the function โ„Ž ๐‘ฅ = ๐‘ฅ 2 +2๐‘ฅโˆ’3, Plot a graph of โ„Ž(๐‘ฅ) in the domain โˆ’4โ‰ค๐‘ฅโ‰ค2. Use your graph to solve the inequality โ„Ž ๐‘ฅ >0.

3 Use Algebraic Strategies
pg Use Algebraic Strategies The rules for solving inequalities are almost the same as the rules for solving equalities. ๐Ÿ‘<๐Ÿ” 3+3<6+3โ‡’6<9 Addition valid 3โˆ’3<6โˆ’3โ‡’0<3 Subtraction valid 3ร—3<6ร—3โ‡’9<18 Multiplication valid 3 3 < 6 3 โ‡’1<2 Division valid 3ร—โˆ’3<6ร—โˆ’3โ‡’โˆ’9โ‰ฎโˆ’18 Negative multiplication invalid 3 โˆ’3 < 6 โˆ’3 โ‡’โˆ’1โ‰ฎโˆ’2 Negative division invalid

4 Use Algebraic Strategies
pg Use Algebraic Strategies Multiplying or dividing by a negative number makes the inequality invalid. When multiplying or dividing by a negative number, the direction of the inequality must be reversed. e.g. 3ร—โˆ’3<6ร—โˆ’3โ‡’โˆ’9>โˆ’18

5 Use Algebraic Strategies
pg Use Algebraic Strategies Solve 3๐‘ฅโˆ’2โ‰ค0 โ‡’3๐‘ฅโ‰ค2 โ‡’๐‘ฅโ‰ค 2 3 Solve 4๐‘ฅ 3 +1<0 โ‡’ 4๐‘ฅ 3 <โˆ’1 โ‡’4๐‘ฅ<โˆ’3 โ‡’๐‘ฅ<โˆ’ 3 4

6 Use Algebraic Strategies
pg Use Algebraic Strategies Solve ๐‘ฅ 2 +2๐‘ฅโˆ’3>0 โ‡’ ๐‘ฅ+3 ๐‘ฅโˆ’1 >0 When is the product greater than zero? Consider where each factor is positive and negative by looking at the equivalent root. โˆ’๐Ÿ‘ ๐Ÿ (๐‘ฅ+3) (๐‘ฅโˆ’1) (๐‘ฅ+3)(๐‘ฅโˆ’1) >0 <0 So ๐‘ฅ<โˆ’3 and ๐‘ฅ>1 are valid solutions for ๐‘ฅ.

7 Use Algebraic Strategies
pg Use Algebraic Strategies Solve 3 ๐‘ฅ 2 โˆ’2๐‘ฅโˆ’2โ‰ค0 Not factorisable โ€“ pretend itโ€™s an equation and use quadratic formula: ๐‘ฅ= โˆ’ โˆ’2 ยฑ โˆ’2 2 โˆ’4 3 โˆ’ โ‡’๐‘ฅ=1.215 or ๐‘ฅ=โˆ’0.549 Reform this into factorised form: โ‡’ ๐‘ฅโˆ’ ๐‘ฅ โ‰ค0 And work out what values of ๐‘ฅ will make the product negative.

8 Use Algebraic Strategies
pg Use Algebraic Strategies โ‡’ ๐‘ฅโˆ’ ๐‘ฅ โ‰ค0 And work out what values of ๐‘ฅ will make the product negative. โˆ’๐ŸŽ.๐Ÿ“๐Ÿ’๐Ÿ— ๐Ÿ.๐Ÿ๐Ÿ๐Ÿ“ (๐‘ฅ+0.549) (๐‘ฅโˆ’1.215) (๐‘ฅโˆ’1.215)(๐‘ฅ+0.549) โ‰ฅ0 โ‰ค0 So โˆ’0.549โ‰ค๐‘ฅโ‰ค1.215 is the solution set for ๐‘ฅ.

9 Use Algebraic Strategies
pg Use Algebraic Strategies Determine the values of ๐‘˜โˆˆโ„ for which the quadratic equation ๐‘ฅ 2 โˆ’๐‘˜๐‘ฅ+ 3๐‘˜โˆ’8 =0 has real roots. Remember the quadratic formula: ๐‘ฅ= โˆ’๐‘ยฑ ๐‘ 2 โˆ’4๐‘Ž๐‘ 2๐‘Ž will yield real roots when ๐‘ 2 โˆ’4๐‘Ž๐‘ is positive or zero (i.e. ๐‘ 2 โˆ’4๐‘Ž๐‘โ‰ฅ0) For this quadratic, โˆ’๐‘˜ 2 โˆ’4 1 3๐‘˜โˆ’8 โ‰ฅ0 โ‡’ ๐‘˜ 2 โˆ’12๐‘˜+32โ‰ฅ0

10 Use Algebraic Strategies
pg Use Algebraic Strategies ๐‘˜ 2 โˆ’12๐‘˜+32โ‰ฅ0 โ‡’ ๐‘˜โˆ’4 ๐‘˜โˆ’8 โ‰ฅ0 ๐Ÿ’ ๐Ÿ– (๐‘˜โˆ’4) (๐‘˜โˆ’8) (๐‘˜โˆ’4)(๐‘˜โˆ’8) โ‰ฅ0 โ‰ค0 So ๐‘˜โ‰ค4 and ๐‘˜โ‰ฅ8 are valid values for ๐‘˜.

11 Use Algebraic Strategies
pg Use Algebraic Strategies Solve 2๐‘ฅ+3 ๐‘ฅโˆ’1 <1 for ๐‘ฅโˆˆโ„, ๐‘ฅโ‰ 1. (why is it important that ๐‘ฅโ‰ 1?) If this were an equation, the first step we would normally take is to multiply both sides by ๐‘ฅโˆ’1 to get rid of the fraction. Given that this is an inequality, remember that multiplying by a negative number reverses the inequality, while multiplying by a positive number preserves the inequality.

12 Use Algebraic Strategies
pg Use Algebraic Strategies To be sure of our answer, we must be sure to multiply by a positive number. ๐‘ฅโˆ’1 2 will still eliminate the fraction, while we guarantee that it is positive: ๐‘ฅโˆ’1 2 ร— 2๐‘ฅ+3 ๐‘ฅโˆ’1 <1ร— ๐‘ฅโˆ’1 2 โ‡’ 2๐‘ฅ+3 ๐‘ฅโˆ’1 <1 ๐‘ฅโˆ’1 ๐‘ฅโˆ’1 โ‡’2 ๐‘ฅ 2 โˆ’2๐‘ฅ+3๐‘ฅโˆ’3< ๐‘ฅ 2 โˆ’๐‘ฅโˆ’๐‘ฅ+1 โ‡’2 ๐‘ฅ 2 +๐‘ฅโˆ’3< ๐‘ฅ 2 โˆ’2๐‘ฅ+1 โ‡’ ๐‘ฅ 2 +3๐‘ฅโˆ’4<0

13 Use Algebraic Strategies
pg Use Algebraic Strategies ๐‘ฅ 2 +3๐‘ฅโˆ’4<0 โ‡’ ๐‘ฅ+4 ๐‘ฅโˆ’1 <0 โˆ’๐Ÿ’ ๐Ÿ (๐‘ฅ+4) (๐‘ฅโˆ’1) (๐‘ฅ+4)(๐‘ฅโˆ’1) >0 <0 So โˆ’4<๐‘ฅ<1 is the valid solution set.

14 pg Use Modulus The modulus of a number, |๐‘ฅ|, outputs the positive version of that number. e.g. 5 =5 e.g. โˆ’5 =5 If given |๐‘ฅ|, there is no way to tell whether ๐‘ฅ is positive or negative. If ๐‘ฅ =๐‘Ž, then there are two possibilities: ๐‘ฅ=๐‘Ž, or โˆ’๐‘ฅ=๐‘Ž

15 pg Use Modulus If ๐‘ฅ =|๐‘ฆ|, since we cannot tell the sign of ๐‘ฅ or ๐‘ฆ, we get two possibilities: ๐‘ฅ=๐‘ฆ, or ๐‘ฅ=โˆ’๐‘ฆ Finally, since squaring a number ensures a positive result, ๐‘ฅ 2 = ๐‘ฅ 2

16 Use Modulus Solve ๐‘ฅ+3 =2 Solve 2๐‘ฅ+3 =7 Solve 2๐‘ฅโˆ’1 = ๐‘ฅ+2
pg Use Modulus Solve ๐‘ฅ+3 =2 Solve 2๐‘ฅ+3 =7 Solve 2๐‘ฅโˆ’1 = ๐‘ฅ+2 Solve 3๐‘ฅโˆ’5 = 7๐‘ฅ+1 Solve ๐‘š+1 = ๐‘š 2 +5

17 Solve Modulus Inequalities
pg Solve Modulus Inequalities For modulus inequalities, the direction of the inequality determines how to solve it.

18 Solve Modulus Inequalities
pg Solve Modulus Inequalities For ๐‘ฅ <๐‘Ž, the solution is given by โˆ’๐‘Ž<๐‘ฅ<๐‘Ž For ๐‘ฅ >๐‘Ž, the solution is given by โˆ’๐‘Ž>๐‘ฅ or ๐‘ฅ>๐‘Ž Solve ๐‘ฅโˆ’2 <5 โ‡’โˆ’5<๐‘ฅโˆ’2<5 โ‡’โˆ’5+2<๐‘ฅโˆ’2+2<5+2 โ‡’โˆ’3<๐‘ฅ<7

19 Solve Modulus Inequalities
pg Solve Modulus Inequalities Solve ๐‘ฅโˆ’2 >1 โ‡’๐‘ฅโˆ’2>1 โ‡’๐‘ฅ>3 or โ‡’๐‘ฅโˆ’2<โˆ’1 โ‡’๐‘ฅ<1

20 Solve Modulus Inequalities
pg Solve Modulus Inequalities Solve 1< ๐‘ฅโˆ’2 <5 From previous questions, we know: 1< ๐‘ฅโˆ’2 โ‡’๐‘ฅ<1 or ๐‘ฅ>3 ๐‘ฅโˆ’2 <5โ‡’โˆ’3<๐‘ฅ<7 Combining the possible values for ๐‘ฅ yields: โˆ’3<๐‘ฅ<1 or 3<๐‘ฅ<7 as the solution sets.


Download ppt "Inequalities โ€“ Learning Outcomes"

Similar presentations


Ads by Google