Download presentation
Presentation is loading. Please wait.
Published byJasper Henderson Modified over 6 years ago
1
Global smoothed seismicity models and test results
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA , Global smoothed seismicity models and test results
2
Outline of the Talk Statistical analysis of earthquake occurrence – earthquake numbers, spatial scaling, size, time, space, and focal mechanism orientation statistical distributions. Current global earthquake forecasts and their testing, RELM/CSEP projects. Long- and short-term seismicity rate forecasts in NW Pacific (Tohoku area) region.
3
World seismicity: 1990 – 2000 (PDE)
4
Statistical studies of earthquake catalogs -- time, size, space, focal mechanism
Catalogs are a major source of information on earthquake occurrence. Since late 19-th century certain statistical features were established: Omori (1894) studied temporal distribution; Gutenberg & Richter (1941; 1944) -- size distribution. Quantitative investigations of spatial patterns started late (Kagan & Knopoff, 1980). Focal mechanism investigations (Kagan, 1982; 1991; 2009; 2012)
6
Advantages of this distribution:
Simple (only one more parameter than G-R); Has a finite integrated moment (unlike G-R) for b < 1; Fits global subcatalogs slightly better than the gamma distribution.
8
The maximum-likelihood method is used to determine the
parameters of these tapered G-R distributions (and their uncertainties): An ideal case (both parameters determined) A typical case (corner magnitude unbounded from above)
9
Kagan’s [1999] hypothesis of uniform b still stands.
Review of results on spectral slope, b: Although there are variations, none is significant with 95%-confidence. Kagan’s [1999] hypothesis of uniform b still stands.
11
Kagan, Y. Y. , 2002. Aftershock zone scaling, Bull. Seismol. Soc. Amer
17
Statistical analysis conclusions
The major theoretical challenge in describing earthquake occurrence is to create scale-invariant models of stochastic processes, and to describe geometrical/topological and group-theoretical properties of stochastic fractal tensor-valued fields (stress/strain, earthquake focal mechanisms). It needs to be done in order to connect phenomenological statistical results and to attempt earthquake occurrence modeling with a non-linear theory appropriate for large deformations. The statistical results can also be used to evaluate seismic hazard and to reprocess earthquake catalog data in order to decrease their uncertainties.
18
Earthquake rate forecasting
The fractal dimension of earthquake process is lower than the embedding dimension: Space – 2.2 in 3D,Time – 0.5 in 1D. This allows us to forecast rate of earthquake occurrence – specify regions of high probability and use temporal clustering for short-term forecast -- evaluating possibility of new event. Long-term forecast: Spatial smoothing kernel is optimized by using first temporal part of a catalog to forecast its second part.
19
Kagan, Y. Y., and D. D. Jackson, New seismic gap hypothesis: Five years after, J. Geophys. Res., 100, N test (events number) L test (events location likelihood) R test (likelihood comparison of models)
20
Jackson, D. D., and Y. Y. Kagan, Testable earthquake forecasts for 1999, Seism. Res. Lett., 70, Combined long- and short-term forecast for north- and south-western Pacific area
21
Long-term earthquake rate based on PDE catalog 1969-present.
Forecast: Long-term earthquake rate based on PDE catalog 1969-present. 0.1 x 0.1 degree, Magnitude M>=5.0
22
Short-term earthquake rate based on PDE catalog 1969-present.
Forecast: Short-term earthquake rate based on PDE catalog 1969-present. 0.1 x 0.1 degree, Magnitude M>=5.0
24
Error diagram tau, nu for global long-term seismicity (M > 5
Error diagram tau, nu for global long-term seismicity (M > 5.0) forecast. Solid black line -- the strategy of random guess. Solid thick red diagonal line is a curve for the global forecast. Blue line is earthquake distribution from the PDE catalog in (forecast); magenta line corresponds to earthquake distribution from the PDE catalog in
28
Earthquake forecast conclusions
We present an earthquake forecast program which quantitatively predicts both long- and short-term earthquake probabilities. The program is numerically and rigorously testable both retrospectively and prospectively as done by CSEP worldwide, as well as in California, Italy, Japan, New Zealand, etc. It is ready to be implemented as a technological solution for earthquake hazard forecasting and early warning.
29
END Thank you
38
Abstract Earthquake occurrence exhibits scale-invariant statistical properties: (a) Earthquake size distribution is a power-law (the Gutenberg-Richter relation for magnitudes or the Pareto distribution for seismic moment). Preservation of energy principle requires that the distribution should be limited on the high side; thus we use the generalized gamma or tapered Pareto distribution. The observational value of the distribution index is about However, it can be shown that empirical evaluation is upward biased, and the index of 1/2, predicted by theoretical arguments, is likely to be its proper value. The corner (maximum) moment has an universal value for shallow earthquakes occurring in subduction zones. We also determined the corner moment values for 8 other tectonic zones. (b) Earthquake occurrence has a power-law temporal decay of the rate of the aftershock and foreshock occurrence (Omori's law), with the index 0.5 for shallow earthquakes. The short-term clustering of large earthquakes is followed by a transition to the Poisson occurrence rate. In the subduction zones this transition occurs (depending on the deformation rate) after 7-15 years, whereas in active continents or plate-interiors the transition occurs after decades or even centuries. (c) The spatial distribution of earthquakes is fractal: the correlation dimension of earthquake hypocenters is equal to 2.2 for shallow earthquakes. (d) The stochastic 3-D disorientation of earthquake focal mechanisms is approximated by the rotational Cauchy distribution.
39
Abstract (cont.) On the basis of our statistical studies, since 1977 we have developed statistical short- and long-term earthquake forecasts to predict earthquake rate per unit area, time, and magnitude. The forecasts are based on smoothed maps of past seismicity and assume spatial and temporal clustering. Our recent program forecasts earthquakes on a 0.1 degree grid for a global region 90N--90S latitude. For this purpose we use the PDE catalog that reports many smaller quakes (M>=5.0). For the long-term forecast we test two types of smoothing kernels based on the power-law and on the spherical Fisher distribution. We employ adaptive kernel smoothing which improves our forecast in seismically quiet areas. Our forecasts can be tested within a relatively short time period since smaller events occur with greater frequency. The forecast efficiency can be measured by likelihood scores expressed as the average probability gains per earthquake compared to the spatially or temporally uniform Poisson distribution. The other method uses the error diagram to display the forecasted point density and the point events.
40
Table of earthquake pairs, M>=7.5
42
Statistical studies of earthquake catalogs -- moment tensor
Kostrov (1974) proposed that earthquake is described by a second-rank tensor. Gilbert & Dziewonski (1975) first obtained tensor solution from seismograms. However, statistical investigations even now remained largely restricted to time-size-space regularities. Why? Statistical tensor analysis requires entry to really modern mathematics -- it is difficult!
43
Kagan, Y. Y., Temporal correlations of earthquake focal mechanisms, Geophys. J. Int., 143,
45
not to be taken literally! (“a large number”) 95%-confidence lower limit threshold magnitude 95%-confidence upper limit 95%-confidence lower limit
46
Error diagram tau, nu for global long-term seismicity (M > 5
Error diagram tau, nu for global long-term seismicity (M > 5.0) forecast. Solid black line -- the strategy of random guess. Solid thick red diagonal line is a curve for the global forecast. Blue line is earthquake distribution from the PDE catalog in (forecast); magenta line corresponds to earthquake distribution from the PDE catalog in
47
Earthquake Phenomenology
Modern earthquake catalogs include origin time, hypocenter location, and second-rank seismic moment tensor for each earthquake. The DC tensor is symmetric, traceless, with zero determinant: hence it has only four degrees of freedom -- one for the norm of the tensor and three for the 3-D orientation of the earthquake focal mechanism. An earthquake occurrence is considered to be a stochastic, tensor-valued, multidimensional, point process.
48
GCMT catalog of shallow earthquakes 1976-2005
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.