Download presentation
Presentation is loading. Please wait.
1
M.P. Council of Science & Technology
RAPD PCR profiling of lipase producing bacterial isolates from Anhoni Hot Spring, Central India Dr. Anita Tilwari , Senior Scientist M.Sc. Microbiology,, Ph D Biotechnology PDF Molecular Medicine From Malaysia CENTRE OF EXCELLENCE IN BIOTECHNOLOGY M.P. Council of Science & Technology (Deptt. of Science & Technology, Govt. of M.P.) Vigyan Bhavan, Nehru Nagar, Bhopal
2
Hot springs are natural ecosystem formed by the discharge of geothermally heated ground water from the volcanic activities of the earth’s crust and cracks or joints in sedimentary rock . In Madhya Pradesh there are many hot springs like Anhoni hot spring pipariya, Choti Anhoni Sohagpur, Fatehpur Hot spring, Dhuni pani, Babeha etc. In Indian mythology it is a belief that the hot springs are sacred and have holy ambiance with elixir like property, which can heal people from fatal disease and also that pregnant women take bath on mahashivratri and makarsankranti to heal the impotency, to be blessed with the motherhood.
3
Anhoni hot water spring is the sulphurous spring with acidic in nature.
For several decades, the bacteria from hot springs have attracted the interest of many scientists due to their biotechnological potential and scientific curiosity. It is very important to have increased awareness of conserving microbial diversity. Intensive research work has already been done in India and world focusing on physiochemical properties and geological features.
4
Many scientist studied biodiversity, genotypic and phenotypic characterisation of bacteria from Tarabalo and Taptapani from Orissa India, Unkeshwar , Maharashtra, Manikaran, Himachal Pradesh, Barkeshwar, West Bengal Tatta pani from Azad Kashmir, Siloam , South Africa, Soldhar and Ringigad , Uttaranchal Himalaya, and were explored for their microbial isolation and identification and molecular characterization using 16S rRNA, fatty acid analysis and enzyme production. But the hot springs in Madhya Pradesh were not even investigated for their physicochemical properties and microbial community diversity.
5
It is very important to study the microbial diversity in order to understand the distribution of organism, functional potential, regulation, sustainable management of disturbed biodiversity The molecular approach to the study of microbial diversity is more effective than the conventional biochemical markers as it directly access the hereditary information and makes it easy to understand the relationship between an individual Random amplified polymorphic DNA analysis proved to be a reliable, very simple, easy, cost effective with no prior information of DNA required and can be performed even in the remote area as no need of liquid nitrogen for DNA isolation required
6
In a large number of studies RAPD reproduced very successful results in studying the genetic diversity of bacteria from soil, water, plant, etc. This is a first new approach towards investigation of bacterial diversity among Anhoni hot spring water microbial communities living in extreme environments. In this study, thermophilic lipase producing bacterial isolates from Anhoni hot spring were characterized using genomic patterns obtained through RAPD.
7
Aim and Objectives This study was conducted with the aim to evaluate diversity of lipase producing bacteria isolated from Hot spring of Madhya Pradesh. India. Different microbial and molecular techniques were used in this study. In this context, the work focused on the following aspects: Isolation of cultivable lipase producing bacteria Isolation of bacteria using Morphological characterization and biochemical estimation of the isolated strains. Molecular Characterization and evaluation of genetic diversity of the isolated strains of Bacterial strains using RAPD Analysis. Identification of the isolates belonging to different phylogenetic groups on the basis of 16S rDNA sequencing.
8
Materials and Methods Study area and sample collection
A water sample was collected in winter season the month of January 2015 from the hot water (Temp C, pH- 3.5± 5) spring, Anhoni ( ’ 39.9” N, ’ 51.4”E) located in Hoshangabad district of Central India
9
Physicochemical analysis of Hot spring water samples
Water samples were treated and analyzed for its physiochemical properties . Water sample is subjected to physiochemical analysis like pH TDS Conductivity, Chlorine Salinity, Dissolved oxygen (DO) Biological oxygen demand (BOD) Chemical oxygen demand (COD).
10
Isolation and pure culture development of bacteria from a hot spring
Isolation and screening of alkaline protease producing bacteria
11
Molecular Characterization:
Preparation of DNA samples for RAPD (Genomic DNA): RAPD-PCR Analysis Data analysis and Scoring PIC = 2fi (1-fi), Where fi = Frequency of amplified allele (present band) and (1-fi) = frequency of the null allele (absent band) of marker (I). Marker index was calculated according to the formula MI= Product of PIC and the number of polymorphic bands per assay unit (Powell et al., 1996). SI= 2Nij/( Ni + NJ)
12
Overview of 16S rRNA Gene Sequencing
Cloning or single-strand prep DNA 16S rRNA gene PCR Vector + 16S rRNA Sequencing Database search Phylogenetic tree extraction
13
PCR Amplification of 16S rRNA Gene
Genomic DNA or cell lysate electrophoresis PCR primers dNTP Taq DNA polymerase 95 C, 1 min 60 C, 1 min 72 C, 2 mins 35 cycles 1636 bp Primer 9F (5’-GAGTTTGATCCTGGCTCAG-3’) Fig. Agarose gel electrophoresis of PCR-amplified 16S rRNA genes 16S rRNA gene Primer 1542R (5’-AGAAAGGAGGTGATCCAGCC-3’)
14
Result and Discussion:
Physiological Characterization of hot water spring: Color Transparent Transparent Odour Sulphorous Flammable pH Temperature (0C) Molecular weight Conductivity ms TDS ppt 500 Salinity ppm COD mg/L 250 Turbidity NTU 200 DO mg/L 7 BOD µg/ml 30
16
Total no. of polymorphic bands (b) Total no. of monomorphic bands (b)
Molecular Characterization of Bacterial isolates from Hot water spring Primer Accessions Total no. of bands (a) Total no. of polymorphic bands (b) Total no. of monomorphic bands (b) Polymorphism (b/a × 100) Fragment size (bp) RBa-1 AM911690 10 100% RBa-2 AM773311 8 RBa-3 AM773772 7 RBa-4 AM911679 5 3 2 60% RBa-5 AM911680 9 1 88.8% RBa-6 AM773778 RBa-7 AM773318 13 RBa-8 AM911681 RBa-9 AM911682 RBa-10 AM911683 4 Total 10 Primers 71 68 03 94.8 Average 7.1 6.8 0.3 94.9
17
Jaccard’s similarity coefficient among different bacterial isolates through RAPD.
18
HSM 1 HSM3 HSM 4 HSM5 HSM6A HSM6 B HSM7 HSM8 HSM9 HSMC A-1 CA-2 CA-4 HSMC A-5 CA-6 CA-7 HSM-1 1 HSM-3 0.339 HSM-4 0.298 0.318 HSM-5 0.220 0.328 0.382 HSM- 6A 0.299 0.393 0.333 HSM- 6B 0.305 0.268 0.35 0.197 HSM-7 0.231 0.208 0.235 0.188 0.355 0.338 HSM-8 0.246 0.141 0.27 0.238 0.379 0.537 0.344 HSM-9 0.184 0.212 0.175 0.211 0.253 0.347 0.391 HSM- CA1 0.157 0.161 0.169 0.25 0.213 0.329 HSM- CA2 0.192 0.191 0.131 0.276 0.316 0.256 0.378 0.387 HSM- CA4 0.239 0.2 0.145 0.181 0.24 0.156 0.198 0.413 HSM- CA5 0.214 0.324 0.187 0.261 0.203 0.281 0.28 0.403 0.508 HSM- CA6 0.225 0.266 0.247 0.282 0.321 0.21 0.341 0.351 0.457 HSM- CA7 0.16 0.271 0.182 0.19 0.128 0.134 0.274 0.552
19
Paired group Jaccard coefficient matrix of Bacterial isolates based on RAPD marker.
20
>gi| 123456|CA - 1 HSM | 16S ribosomal RNA gene, partial Sequence
Total sequence: 1472bp >gi| |CA - 1 HSM | 16S ribosomal RNA gene, partial Sequence TGATGtTAgcGGcGGACGGGTGAgTAaCACGTGGgTAACCTGCCTGTaAGACTGGGATAACTCCGGGAACCGGGGCTAaTACCGGATGcTTGTTTATGGTTCAAACATAAAAGGTGGCTTCGGCTACCCTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCaACGATGCGAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTGCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTAGAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCgCGGTGAATaCGTTCCCGGGCCTTGTACACACCGCCCGTCACACCaCGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTTA
21
>gi|559795282|ref|NR_104873. 1| Bacillus subtilis subsp
>gi| |ref|NR_ | Bacillus subtilis subsp. inaquosorum strain BGSC 3A28 16S ribosomal RNA gene, partial sequence TTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGCTTGTTTGAACCGCATGGTTCAAACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTACCGTTCGAATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTAGAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTTAGGAGCCAGCCGCCGAAGGTGGGACAGATGATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTT
22
>gi | 123456|M-4HSM| 16S ribosomal RNA gene, partial sequence
CGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTAGAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGGTGTCTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATCCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAgtcGGtGAGGTAACCTTTTAGGAGCCAGCCGCCGAAGGTGGGACAGATGATtGGGGTGAAGTC Total sequence: 672bp
23
Results of BLAST in NCBI Database
24
Results of BLAST in NCBI Database
25
Phylogenetic analysis of 16S rRNA gene sequences from isolate bacterial of hot. Phylogenetic trees were constructed using sequences from the representative bacterial. The dendrograms show the result from analysis using Megha 6 and neighbor-joining.
26
Phylogenetic tree (Bacillus)
27
THANK YOU
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.