Download presentation
Presentation is loading. Please wait.
1
Data Recovery of Bioinformatics Microarray
2
Missing value prediction
Bio Data IPO Preprocess Phase User-based Method Normalization(未實作) Data discritization Prediction Phase Rough Set Method Missing value prediction
3
Example – Preprocess Phase (1/2)
Original data matrix Data matrix after user-based method M 1 M 2 M3 M4 M 5 U1 0.4 T ? 0.2 U2 0.3 0.1 U3 0.5 U4 U5 U6 U7 U8 U9 U10 M 1 M 2 M3 M4 M 5 U1 0.4 T 0.3 0.2 U2 0.1 U3 0.5 U4 U5 U6 U7 U8 U9 U10
4
Example – Preprocess Phase (2/2)
Goal: Data transform Function: Example: M1 M2 M3 M4 M5 Avg Step U1 0.3 0.4 -0.1 -0.3 0.2 0.1 ( )/3 = 0.1 U2 -0.4 ( )/3 = -0.1 M1 M2 M3 M4 M5 U1 3 4 -1 -3 2 U2 -2 1
5
Example – Prediction Phase ( user size=2 ,item size=3)
Data matrix after data preprocess M 1 M 2 M3 M4 M 5 U1 4 T 3 2 U2 1 U3 5 U4 U5 U6 U7 U8 U9 U10
6
Example – Prediction Phase ( user size=2 ,item size=2)
Class Selection: Compute similarity with target item by Pearson Correlation Coefficient M 1 M 2 M3 M4 M 5 U1 4 T 3 2 U2 1 U3 5 U4 U5 U6 U7 U8 U9 U10
7
Equivalence class sets: Matrix/ {M2,M3} = {U4}1,2 {U8} 1,1 {U6} 3,1
5 U5 Equivalence class sets: Matrix/ {M2,M3} = {U4}1,2 {U8} 1,1 {U6} 3,1 {U7} 4,2 {U2,U5,U9, U1} 4,3 {U3} 5,1 {U10, U1} 5,3 M 1 M 2 M3 M4 M 5 U3 5 1 U4 2 U6 3 U7 4 U8 User group: {U1,U2,U5,U9,U10} The lower approximation: {U2,U5,U9, U1} 4,3 {U10, U1} 5,3 The set {U10, U1} 5,3 discard by constraint The value will be 4
8
Data Set - diauxic
9
Data Set - ELU
10
Data Set - Phosphate
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.