Presentation is loading. Please wait.

Presentation is loading. Please wait.

Contents Asobu Suzuki Univ. of Tsukuba for Zn Collaboration

Similar presentations


Presentation on theme: "Contents Asobu Suzuki Univ. of Tsukuba for Zn Collaboration"β€” Presentation transcript:

1 CalculationΒ ofΒ high-orderΒ cumulants Β withΒ canonicalΒ ensembleΒ method Β inΒ latticeΒ QCD
Contents Asobu Suzuki Univ. of Tsukuba for Zn Collaboration S. Oka (Rikkyo Univ.) S. Sakai (Kyoto Univ.) Y. Taniguchi (Univ. of Tsukuba) A. Nakamura (Hiroshima Univ.) R. Fukuda (Tokyo Univ.) Quark number cumulant Sign problem Canonical ensemble method Winding number Numerical results Conclusion

2 Hadronic phase : Hadron Resonance Gas QGP phase : Quark Gluon Gas
Motivation 𝑇 πœ‡ QGP phase critical point Hadronic phase QCD phase diagram Hadronic phase : Hadron Resonance Gas QGP phase : Quark Gluon Gas Hadronic phaseγ€€β†’γ€€Quark-Gluon phase from the viewpoint of quark number cumulant

3 Quark number cumulant H.R. Gas =𝐭𝐚𝐧𝐑 πŸ‘ 𝛍 𝐓 =𝟏 =𝟏
𝑁 π‘˜ 𝐢 ≔ πœ• π‘˜ πœ• πœ‡/𝑇 π‘˜ log 𝑍 𝐺.𝐢. H.R. Gas 𝑁 3 𝐢 𝑁 2 𝐢 =𝐭𝐚𝐧𝐑 πŸ‘ 𝛍 𝐓 (dotted line) 𝑁 4 𝐢 𝑁 2 𝐢 =𝟏 𝑁 3 𝐢 𝑁 1 𝐢 =𝟏 deviation from H.R. Gas STAR Collaboration Phys. Rev. Lett. 112 (2014) something interesting?

4 Canonical ensemble method A.Hasenfratz , D.Toussaint (1992)
𝑍 𝐺.𝐢. 𝑇,πœ‡;𝑉 = 𝑛 𝑍 π‘π‘Žπ‘›. 𝑇;𝑛,𝑉 πœ‰ 𝑛 ,πœ‰= 𝑒 πœ‡ 𝑇 Fugacity expansion Canonical partition function Equivalent Grand canonical partition function Residue theorem 𝑍 π‘π‘Žπ‘›. 𝑇;𝑛,𝑉 = 1 2πœ‹π‘– 𝐢 π‘‘πœ‰ πœ‰ βˆ’ 𝑛+1 𝑍 𝐺.𝐢. 𝑇;πœ‰,𝑉 pure imaginary 𝐢:πœ‰= 𝑒 𝑖 πœ‡ 𝑇 , πœ‡ 𝑇 ∈[βˆ’πœ‹,πœ‹) = 1 2πœ‹ βˆ’πœ‹ πœ‹ 𝑑 πœ‡ 𝑇 𝑒 βˆ’π‘– πœ‡ 𝑇 𝑛 𝑍 𝐺.𝐢. 𝑇;π‘–πœ‡,𝑉 Fourier transformation!

5 Winding number expansion Li, X. Meng, A. Alexandru,K. F. Liu (2008)
Canonical partition function Grand canonical partition function Fourier trans. 𝑍 π‘π‘Žπ‘›. 𝑇;𝑛,𝑉 = 1 2πœ‹ βˆ’πœ‹ πœ‹ 𝑑 πœ‡ 𝑇 𝑒 βˆ’π‘– πœ‡ 𝑇 𝑛 𝐷𝑒𝑑 𝐷 π‘–πœ‡ 𝐷𝑒𝑑 𝐷 𝑔 sign real , positive calculate 𝐷𝑒𝑑 𝐷(π‘–πœ‡) at low cost ! 𝛾 5 𝐷 πœ‡ 𝛾 5 =𝐷 βˆ’ πœ‡ βˆ— † 𝐷𝑒𝑑 𝐷 πœ‡ =𝐷𝑒𝑑 1βˆ’πœ…π‘„ πœ‡ = 𝑒 π‘‡π‘Ÿ log 1βˆ’πœ…π‘„ πœ… : hopping parameterγ€€γ€€γ€€γ€€ π‘‡π‘Ÿ log 1βˆ’πœ…π‘„ =βˆ’ 𝑛 πœ… 𝑛 𝑛 π‘‡π‘Ÿ 𝑄 𝑛 = π‘˜ π‘Š π‘˜ 𝑒 πœ‡ 𝑇 π‘˜ π‘˜ ; winding number

6 Numerical results βˆ’ log 𝑍 π‘π‘Žπ‘›. 𝑁 𝛽=1.1 βˆ’ log 𝑍 π‘π‘Žπ‘›. 𝑁 𝛽=2.1
Iwasaki gauge action 2-flavor Wilson Clover Lattice Size : 8 3 Γ—4 𝜷 𝜿 𝑻/𝑻 π‘ͺ 0.9 0.137 0.644 1.1 0.133 0.673 1.3 0.706 1.5 0.131 0.813 1.6 0.130 1.7 0.129 1.00 1.8 0.126 1.9 0.125 1.68 2.1 0.122 3.45 βˆ’ log 𝑍 π‘π‘Žπ‘›. 𝑁  𝛽=1.1 βˆ’ log 𝑍 π‘π‘Žπ‘›. 𝑁  𝛽=2.1 𝑁 π‘˜ = 𝑁 𝑁 π‘˜ 𝑍 π‘π‘Žπ‘›. 𝑁 𝑒 πœ‡ 𝑇 𝑁 𝑁 𝑍 π‘π‘Žπ‘›. 𝑁 𝑒 πœ‡ 𝑇 𝑁 𝑇 𝐢 πœ‡=0 = 𝑀𝑒𝑉 small 𝛽 β†’ low temperature large 𝛽 β†’ high temperature

7 H.R. gas Q.G. gas 𝑁 2 𝐢 / 𝑁 1 𝐢 𝛽 not depend on 𝜷 (solid line)
𝑁 2 𝐢 / 𝑁 1 𝐢 𝛽 H.R. gas (solid line) 𝑁 2 𝐢 𝑁 𝐢 = 3 coth πœ‡ 𝐡 𝑇 not depend on 𝜷 𝑁 2 𝐢 𝑁 𝐢 = πœ‹ πœ‡ 𝐡 3𝑇 πœ‡ 𝐡 3𝑇 + 1 πœ‹ πœ‡ 𝐡 3𝑇 3 Q.G. gas (dotted line)

8 𝑁 2 𝐢 / 𝑁 1 𝐢 𝛽 consistent with H.R. gas approach to Q.G. gas
𝑁 2 𝐢 / 𝑁 1 𝐢 𝛽 πœ‡ 𝐡 /𝑇=0.12 ,0.24 ,1.08 , 𝛽≾1.6 πœ‡ 𝐡 /𝑇 = 𝛽≾ , πœ‡ 𝐡 /𝑇= 𝛽≾1.4 consistent with H.R. gas π›½βˆΌ2.1 approach to Q.G. gas

9 Comparison with previous work
374.7 767.0 222.5 157.1 143.3 T[MeV] Christof Gattringer and Hans-Peter Schadler Phys. Rev. D 91, This work consistent behavior application range of HR gas becomes small as πœ‡/𝑇 increases measure the H.R. gas / Q.G. gas transition

10 artificial phase transition
Function of πœ‡ 𝐡 /𝑇 We truncate the fugacity expansion deviate from HR gas approach to QG gas 𝑍 𝐺.𝐢. πœ‡ π‘ž /𝑇 ∼ 𝑛=βˆ’ 𝑁 𝑐𝑒𝑑 𝑁 𝑐𝑒𝑑 𝑍 π‘π‘Žπ‘›. 3𝑛 𝑒 3𝑛 πœ‡ π‘ž 𝑇 𝑍 π‘π‘Žπ‘›. 3𝑛 =0 , 𝑛 > 𝑁 𝑐𝑒𝑑 deviate from QG gas not depend on 𝑡 𝒄𝒖𝒕 𝑁 2 𝐢 / 𝑁 1 𝐢 πœ‡ 𝐡 /𝑇 ,𝛽=0.9 HR gas(blue line) QG gas(red line) 𝑡 𝒄𝒖𝒕 creates artificial phase transition

11 𝑁 2 𝐢 / 𝑁 1 𝐢 πœ‡ 𝐡 /𝑇 at low temperature
HR gas(blue line) QG gas(red line) 𝜷=𝟏.πŸ“ 𝜷=𝟎.πŸ— consistent small 𝝁 𝑩 /𝑻 ∼ H.R. gas 𝝁 𝑩 /𝑻 βˆΌπŸ’ for 𝜷=𝟎.πŸ— 𝝁 𝑩 /𝑻 βˆΌπŸ‘.πŸ“ for 𝜷=𝟏.πŸ“ large 𝝁 𝑩 /𝑻 ∼ Q.G. gas Application range of HR gas becomes small as 𝛽 increases. circumstantial evidence of phase transition

12 𝑁 2 𝐢 / 𝑁 1 𝐢 πœ‡ 𝐡 /𝑇 at high temperature
𝜷=𝟐.𝟏 HR gas(blue line) QG gas(red line) 𝜷=𝟏.πŸ— approach to QG gas as 𝜷 increases 𝜷=𝟏.πŸ— volume dependence πŸ– πŸ‘ Γ—πŸ’ 𝟏𝟐 πŸ‘ Γ—πŸ’ approach to QG gas as volume increases interaction remains

13 Skewness (fig. above) Kurtosis (fig. bottom)
Skewness , Kurtosis 𝑣𝑠. 𝛽 𝑁 3 𝐢 𝑁 1 𝐢 𝑁 4 𝐢 𝑁 2 𝐢 solid line : H.R. gas dotted line : Q.G. gas Skewness (fig. above) Kurtosis (fig. bottom) πœ‡ 𝐡 /𝑇=0.12 ,1.08 , 𝛽≾1.6 𝝁 𝑩 /𝑻=𝟐,πŸŽπŸ’ ,𝜷=𝟏.πŸ” deviate from H.R. gas negative value consistent with H.R. gas as same as 𝑡 𝟐 π‘ͺ / 𝑡 π‘ͺ

14 circumstantial evidence of phase transition
Kurtosis 𝑣𝑠. πœ‡ 𝐡 /𝑇 ,𝛽=1.6 consistent with H.R. gas approach to Q.G. gas singularity circumstantial evidence of phase transition

15 more high-order cumulant 𝛽=1.6
𝑁 5 𝐢 / 𝑁 1 𝐢 πœ‡ 𝐡 /𝑇 𝑁 6 𝐢 / 𝑁 2 𝐢 πœ‡ 𝐡 /𝑇 β‰ πŸ–πŸ 𝝁 𝑩 /𝑻~𝟎 β‰ πŸ–πŸ 𝝁 𝑩 /𝑻~𝟎 𝑁 5 𝐢 𝑁 𝐢 = 𝑁 6 𝐢 𝑁 2 𝐢 =81 H.R. gas (blue line) 2nd ,3rd ,4th : consistent with H.R. gas 5th ,6th : inconsistent with H.R. gas (suggestion)

16 Conclusion Canonical ensemble method Hadron Resonance gas model
Sign problem become mild. We can see as a function of πœ‡ 𝐡 /𝑇 . 𝑁 𝑐𝑒𝑑 makes an artificial phase transition! Hadron Resonance gas model Less than 4th-order β†’ HR gas is good model. It may be difficult to adapt HR gas for 5th and 6th. Quark Gluon gas model large 𝛽 or πœ‡/𝑇 β†’ approach to Q.G. gas Circumstantial evidence of phase transition We measured singular behavior for 𝛽=1.6 . We saw HR gas / QG gas transition.

17 back up

18 Grand Canonical ensemble
Quark number cumulant 𝑁 π‘˜ 𝐢 ≔ πœ•πΊ πœƒ πœ• πœƒ π‘˜ πœƒ=0 𝐺 πœƒ ≔ log βˆ«π‘‘π‘› 𝑒 πœƒπ‘› 𝑃(𝑛) Distribution 𝑃(𝑛) characterize 𝑁 1 𝐢 =πœ‡ 𝑁 2 𝐢 = 𝜎 2 𝑁 π‘˜ 𝐢 =0 , π‘“π‘œπ‘Ÿ π‘˜>2 𝑃 𝑛 = 1 2πœ‹ 𝜎 𝑒 βˆ’ π‘›βˆ’πœ‡ 𝜎 2 2 𝜎 2 ex. Gaussian πœ‡ non-Gaussian Grand Canonical ensemble 𝑃 𝑛 ≔ 𝑒 πœ‡ 𝑇 𝑛 𝑍 π‘π‘Žπ‘›. (𝑛) 𝑍 𝐺.𝐢. (πœ‡) system heat bath 𝑁 π‘˜ 𝐢 = πœ• π‘˜ πœ• πœ‡/𝑇 π‘˜ log 𝑍 𝐺.𝐢. energy particle

19 around phase transition line finite density lattice QCD
Quark number cumulant 𝑁 π‘˜ 𝐢 = πœ• π‘˜ πœ• πœ‡/𝑇 π‘˜ log 𝑍 𝐺.𝐢. 𝑁 2 𝐢 = 𝛿 𝑁 2 𝑁 3 𝐢 = 𝛿 𝑁 3 𝑁 4 𝐢 = 𝛿 𝑁 4 βˆ’3 𝛿 𝑁 2 2 2nd 4th 3rd 𝑁 3 𝐢 𝑁 2 𝐢 around phase transition line 𝑁 4 𝐢 𝑁 2 𝐢 𝑁 π‘˜ 𝑁 π‘˜ 𝐢 expectation value 𝑁 3 𝐢 𝑁 1 𝐢 sign problem finite density lattice QCD STAR Collaboration Phys. Rev. Lett. 112 (2014)

20 Volume dependence 8 3 Γ—4 𝑣𝑠. 12 3 Γ—4 𝑁 2 𝐢 / 𝑁 1 𝐢 πœ‡ 𝐡 /𝑇 𝛽=0.9
8 3 Γ—4 𝑣𝑠 Γ—4 𝑁 2 𝐢 / 𝑁 1 𝐢 πœ‡ 𝐡 /𝑇 𝛽=0.9 𝑁 2 𝐢 / 𝑁 1 𝐢 πœ‡ 𝐡 /𝑇 𝛽=1.5

21 How to determine 𝑁 𝑐𝑒𝑑 ? d’Alembert 𝑛 π‘Ž 𝑛 lim π‘›β†’βˆž π‘Ž 𝑛+1 π‘Ž 𝑛 <1
𝑍 𝐺.𝐢. (πœ‡)= 𝑛 𝑍 π‘π‘Žπ‘›. 𝑛 𝑒 πœ‡π‘›/𝑇 𝑍 π‘π‘Žπ‘›. 𝑛+1 𝑍 π‘π‘Žπ‘›. 𝑛 𝑒 πœ‡ 𝑇 <1


Download ppt "Contents Asobu Suzuki Univ. of Tsukuba for Zn Collaboration"

Similar presentations


Ads by Google