Download presentation
Presentation is loading. Please wait.
1
QPOs of LMXBs kHz QPO, millisecond pulsar
张承民 尹红星 National Astronomical Observatories Chinese Academy of Sciences
2
Nobel Prize for Pulsar: Rotating Neutron Star
脉冲星发现40年: 1974, A. Hewish, Cambridge U, First Pulsar 1993, R. Hulse, J.A. Taylor, Princeton U, Binary Pulsar Nobel Prize for Pulsar: Rotating Neutron Star
3
Pulsar Froms: SUPERNOVA EXPLOSION
Chinese Astronomer recorded Crab Nebula in 1054 AD, Song Dynasty. It is a great glory of our forefather SUPERNOVA EXPLOSION
4
Neutron Star 10km, solar mass
5
Neutron Star (NS) in Low Mass X-ray Binary
OUTLINE OF TALK Neutron Star (NS) in Low Mass X-ray Binary KHz Quasi Periodic Oscillation (QPO) Millisecond accreting-powered X-ray Pulsar Type-I X-ray Burst Oscillation Other QPOs of NS & BH Theoretical Mechanisms---QPOs Further Expectations
6
RXTE INTRODUCTION Rossi X-ray Timing Explorer (RXTE): NASA
Named after the astronomer, Bruno Rossi, died in 1993 3000+ kg RXTE satellite Launched on Dec. 30, 1995 Delta II rocket into earth orbit 600 km and 23 deg inclination Time const = ms
7
Basic Physical Parameters
动力学时间尺度, 强引力场 Characteristic Velocity: (GM/R)1/2 ~ 0.5c Schwarzschild Radius: Rs = 2GM/c2 Characteristic Time Scale: 2π(R3/GM)1/2 ~ 0.6 (ms) G: Gravitational Const, c: Speed of Light M: Mass, R: Radius Rs = 5 km, for M= 1.4 Mסּ, solar mass Rs = 3 cm, for M= 1.0 Me, earth mass Rs /R = 0.3 : Gravitational Strength
8
RXTE Instruments Proportional Counter Array (PCA)
sensitive to X-rays keV. collecting area (6250 cm2) High Energy X-ray Timing Experiment (HEXTE) The All Sky Monitor (ASM) scan most of the sky every 1.5 hours
9
RXTE Target A/Periodic, transient, and burst in X-ray emission
Characteristics of X-ray binaries, masses, orbital, matter exchange Property: nuclear matter composition, M-R relation, neutron/strange star ? magnetic field Behavior of matter into/onto a black hole/NS Strong Gravity of GR near a black hole Mechanisms causing X-ray emission Strong Gravity, GR, Precession, LS M,R,Spin, EOS, Thermonuclear
10
Binary X-ray Sources Normal Star + Compact Star
10,000 lyr, Hz QPOs, Micro-quasar, Radio jet, 7 solar mass/optical
11
QPO frequencies discovered by RXTE 1996—2007, reviewed by van der Klis 2006
FBO/NBO, ~5-20 Hz, Yu et al HBO, ~15-70 Hz Hundred, ~100 Hz kHz, ~1000-Hz(27) Burst oscillation, ~400 Hz(16) Spin frequency, ~400 Hz (7) Low, high QPO, ~0.1 Hz Others. QPO: Quasi Periodic Oscillation 准周期振荡
12
Typical twin KHZ QPOs (21/27)
Separation ~300 Hz Typically: Twin KHz QPO Upper ν2 = 1000 (Hz) Lower ν1 = 700 (Hz) 21/27 sources; ~290 对 Sco x-1, van der Klis 2006
13
Atoll and Z Sources --- LMXB CCD
~1% Eddington Accretion ~Eddington Accretion Accretion rate direction
14
QPO v.s. Accretion rate relation
QPO frequency increases with the accretion rate SCO X-1, Van der Klis, 2006 QPO轮廓随吸积率变宽/低,消失 Mendez 2005
15
KHz QPO Data,Atoll sources
最大值Max:νmax=1329 Hz, van Straaten 2000 min: ~200 Hz 平均值/Distribution of kHz QPOs:QPO (Atoll) ~ QPO(Z) Zhang et al 2006 MNRAS; 原因?
16
kHz QPOs of Z Sources
17
Difference of twin kHz QPOs = const
Difference of twin kHz QPOs = const? Beat model by Miller, Lamb & Psaltis 1998; Strohmayer etal 1997
18
Saturation of kHz QPO frequency ?
4U , NASA W. Zhang et al, 1998 Kaaret, et al 1999 Swank 2004; Miller 2004 BH/ISCO: 3 Schwarzschild radius Innermost stable circular orbit NS/Surface: star radius, hard surface
19
Parallel Line Phenomenon kHz QPO-luminosity relation
Similarity/Homogeneous ? Among the different sources, same source at the different time
20
kHz QPO v.s. Count rate kHz QPO corresponds to the position in CCD,
to accretion rate Mdot; QPO ~ Mdot B ~ Mdot, proportional Zhang & Kojim, 2006, MNRAS
21
kHz QPO Distribution : Twin frequency difference/ratio is not a constant difference Cir X-1 ν1 = ~700. (Hz)(ν2 /1000Hz)b b ~ 1.6 Atoll Source 4U1728 b ~ 1.8 Z Source Sco X-1 Ratio Zhang,Yin,Zhao,et al ,MNRAS
22
Twin kHz QPO distribution
23
Twin kHz QPO distribution
24
Spin Frequency:SAX J1808.4-3658 Millisecond Radio Pulsar, X-ray MSP
Bhattacharya and van den Heuvel, 1991 Millisecond Radio Pulsar, X-ray MSP Rule : burst vs. pulsation is exclusive ? Sax J : 401 Hz (2.49 ms) Binary Parameters of SAX J Orbital period: 2 hr Orbital radius: 63 lms Mass function: 3.8× 10-5 Mסּ Magnetosphere radius: 30 km Magnetic field : (2-6)×108 Gauss Chakrabaty and Morgan 1998 Nature Wijnands and van der Klis 1998, Nature
25
Accreting X-ray millisecond pulsar --- SAX J1808.4-3658 (7 sources)
Wijnands and van der Klis, 1998 Nature Wijnands et al 2003 Nature 4 sources by Markwardt et al. 2002a, 2003a, 2003b, Galloway et al. 2002
26
Radio Pulsar: Magnetic field--period diagram
(1) Why B-P ? B evolves ? Recycled ? (2) 716 Hz; ~10^8 G; why not 10^7 G ? PSR: 1750, X-ray NS: 200 magnetar: 5SGR+11AXP MSP: 175 BPSR: 130, recycled LMXB Van den Heuvel 2004, Science
27
Accretion-powered X-ray PSR, (7),185-599 Hz
Radio Millisecond PSR is recycled,Alpar, et al 1982 Nature IGR J Hz, Markwardt 2004, 7 MSP sources
28
差频和自旋关系 SAXJ ,Twin kHz QPOs :700 Hz, 500 Hz;Burst/spin: 401 Hz; Wijnands et al 2003, Nature Burst frequency ~ spin frequency XTE 1807, twin kHz QPO, 191 Hz, Linares , van der Klis, Wijnands 2005 ApJ; F. Zhang,J Qu,C Zhang,W.Chen, T.P. Li, ApJ
29
Type-I X-ray Burst Type-I X-ray Burst, Lewin et al 1995/Bildsten 1998
Thermonuclear reaction on accreting NS surface (T/P, spot) Burst rise time: second Burst decay time: second Total energy: erg. Eddington luminosity ! 4U , (363 Hz) Strohmayer et al 1996 362.5 Hz Hz, in 10 second
30
Spectrum of Type-I X-ray Burst frequency
4U , Strohmayer 1996 and Markwardt 1999, van der Klis 2006; Strohmayer and Bildsten 2003
31
Burst Oscillations
32
On the burst frequency Burst frequency increases ~ 2 Hz, drift.
Decreasing is discovered From hot spot on neutron star kHz QPO separation ~ burst/spin frequency
33
Spin Frequency Distribution
Spin 1122 Hz, Kaaret et al 2006 7+11+4=22 Spin sources Hz Radio MSP:716 Hz Yin et al 2007 AA
34
kHz QPO & spin relation
35
Burst and Spin frequency
Burst and Spin frequency are similar,401 Hz X 17 burst sources, Muno et al 2004;van der Klis 2006 X-ray pulsars, Wijnands 2004; Chakrabarty 2004 Spin sources=7+(17-2)=22
36
burst sources, Muno 2004
37
3rd kHz QPO ? 25 kHz QPO 源
38
Low frequency QPO---kHz QPO 关系
Belloni et al 2002 ApJ Low frequency QPO< 100 Hz FBO/NBO = 6-20 (Hz) HBO = (Hz) Empirical Relation νHBO = 50. (Hz)(ν2 /1000Hz) νHBO = 42. (Hz) (ν1/500Hz) νqpo = 10. (Hz) (ν1/500Hz) ν1 = 700. (Hz)(ν2 /1000Hz)
39
Low-high frequency QPO 关系
Neutron stars Black holes ? White dwarfs, Cvs Zhang et al 2007, PASP Warner 2006 MNARS; Warner & Woudt 2004 MNRAS; Mauche 2002 ApJ + 27 CVs, 5 magnitude orders in QPOs
40
Black Hole High Frequency QPOs
HFQPO: (Hz) Constant (stable) in frequency (M/S) Luminosity Pair frequency relation 3:2 Frequency-Mass relation: 1/M 7 BH sources, van der Klis 2006 Jets like Galactic BHs ~10Ms (McClintock & Remillard 2003;2006) Different from those of NS’s GRO J , XTE J XTE , 4U XTE , H GRS , 7 Sources Van der Klis 2006 νk= (1/2π)(GM/r3)1/2 = (c/2πr) (Rs/2r)1/2 νk (ISCO) = 2.2 (kHz) (M/Mסּ) -1 Magnetosphere-disk instability noise: mechanism:?Abramowicz et al AA; MNRAS ; Wang et al, 2003/06, MNRAS Miller, et al 1998 Cui et al. 1998; Zhang SN et al 1997, APJ
41
BH QPO - spectral indices, flux, color
Zhang GB, et al APJ 2007, swift 1753
42
~ High Frequency QPOs in Black Hole LMXBs Name BH Mass(Msun)
HF QPO (Hz) References GRO J ~6 300,450 1,2 XTE J ~10 184,276 188,249~276 3,4 5 GRS ~14 41,67 113,165 328 165 6 7(?) 8(?) 9 H ~ 160,240 166,242 10 11 XTE J ~9 150~200 12 4U 184 100~300 8 13 XTE J 110~270 14
43
STELLAR Black Hole—Micro-quasar
GRS 165 Hz, 14 solar mass 10,000 lyr, 300Hz:450Hz=2:3 Microquasar, Radio jet 6 solar mass/optical
44
QPO and Break Frequency
45
Theoretical Consideration
Accretion Flow around NS/BH Hard surface ? Strong Gravity: Schwarzschild Radius: Rs=2GM/c2 Innermost Stable Circular Orbit RIsco= 3Rs Strong Magnetic: Gauss (Atoll, Z-sources) Beat Model: Kepler Frequency Difference to Spin frequency
46
QPO Models Miller, Lamb & Psaltis ’ Beat Model, developed from Alpar & Shaham 1985 Nature ; Lamb et al 1985 Nature Abramovicz et al : Model non-linear resonance between modes of accretion disk oscillations HFQPO: Stellar black hole QPO, 3:2 relation Wang et al 2003/06 Titarchuk and cooperators ’ Model transition layer formed between a NS surface and the inner edge of a Keplerian disk, QPO: magnetoacoustic wave (MAW), Keplerian frequency. Low-high frequency relation 0.08 ratio Relativistic precession model by Stella & Vietri 1999
47
Theoretical Models Beat Model (HBO), νHBO = νkepler - νspin
What modulate X-ray Flux ? Why quasi periodic, not periodic ? Parameters: M/R/Spin, B?--Z/Atoll Beat Model (HBO), νHBO = νkepler νspin νKepler ≈ r-3/2 is the Kepler Frequency of the orbit νspin Constant, is the spin Frequency of the star Alpar, M., Shaham, J., 1985, Nature r ~ 1/Mdot , νHBO ~ Mdot Beat Model for KHz QPO ν2 = νkepler ν1 = νkepler νspin ∆ν = ν ν1 = νspin Miller, Lamb, Psaltis 1998; Strohmayer et al 1996 Lamb & Miller 2003 …Constant
48
X-射线源准周期振荡QPO RXTE:罗西X-射线卫星1996年发现 kHz QPO:积累近十年观测结果 中子星 kHz QPO,成对出现
黑洞 QPO,100Hz,3:2 HBO,15-70Hz,互相关联 理论解释: 拍模型 重要意义: 爱因斯坦理论,强引力场 黑洞的视界,最小稳定轨道 中子星质量半径,核物态 中子星磁场演化/结构 机制研究: 阿尔文波振荡模型 间隔常数?NO! 拍模型预言:间隔常数=自旋 Alpar和Shaham,1985,Nature。 Lamb et al 1985, Nature。 Miller et al 1998, ApJ。
49
进动模型:Einstein’s Prediction: Perihelion Motion of Orbit
Perihelion precession of Mercury orbit = 43” /century, near NS, ~10^16 times large
50
Neutron Star Orbit N. Copernicus ISCO Saturation
Einstein’s General Relativity: Perihelion precession Precession Model for KHz QPO, Stella and Vietri, 1999 ν2 = νkepler ν1 = νprecession = ν2 [1 – (1 – 3Rs/r)1/2] ∆ν = ν ν1 is not constant
51
Theoretical model Problems: Vacuum Circular orbit Test particle
Predicted 2 M⊙ 5. 30 sources, NS mass ~ 1.4 solar mass Theoretical model Stella and Vietrie, 1999, Precession model
52
Lense-Thirring Precession
BH precession ? L.Stella, M.Vietri, 1998 Cui et al 1998; Zhang SN et al. 1997 From Einstein GR, frame dragging was first quantitatively stated by W. Lense and H. Thirring in 1918, which is also referred to as the Lense-Thirring effect
53
Alfven wave oscillation MODEL Zhang 2004 AA; Li & Zhang 2005 ApJ;
Zhang et al 2007 AN Keplerian Orbital frequency resonance MHD Alfven wave Oscillation in the orbit ν2 = 1850 (Hz) A X3/2 ν1 = ν2X (1- (1-X)1/2)1/2 A=m1/2/R63/2; X=R/r, m: Ns mass in solar mass R6 is NS radius in 10^6 cm
54
Migliari, van der Klis, Fender, 2003 MNRAS
Boutloukos,van der Klis ApJ
55
Neutron Star Mass-Radius
Zhang et al MNRAS AqlX-1, EXO Samples CN1/CN2: normal neutron matter, CS1/CS2: Strange matter CPC: core becomes Bose-Einstein condensate of pions
56
Fastest Pulsar XTE J1739-285 1122 Hz by Kaaret et al. 2006
Radio pulsar 716 Hz , Hessels et al. 2006 XTE , 1122 Hz kHz QPO: Hz Quark Star ?
57
11-year RXTE - where are we now ?
观测,进展较大,QPO关系明确 理论,进展缓慢,很多模型? 物理实验室 强引力广义相对论验证 中子星结构检验核物理 开普勒运动 近星点进动 LT 进动/引力磁 引力红移 黑洞/Kerr 时空 引力波 光线弯曲 质量 半径 核物态(中子/夸克) 磁场 旋转 吸积流动 QPO机制? 数据处理? 新物理?
58
Discussion and Problems
Now, we are standing on the edge of new discovery ? THANKS
59
Have no X-ray pulsation & type-II X-ray bursts
A comparison between high-frequency QPOs in BH LMXBs and those in NS LMXBs QPOs in BH LMXBs QPOs in NS LMXBs Hard spectral Relatively soft Break Have no X-ray pulsation & type-II X-ray bursts Have X-ray pulsation &type-II X-ray bursts ~3:2 ratio Not constant Relatively stable Systemically change with Luminosity 1/M scaling ? Spin? No observational evidence. Spin! X-ray pulsation & type-II X-ray bursts
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.