Presentation is loading. Please wait.

Presentation is loading. Please wait.

Department of Industrial Engineering

Similar presentations


Presentation on theme: "Department of Industrial Engineering"โ€” Presentation transcript:

1 Department of Industrial Engineering
Lecture 5: Algorithmic Methods for for finite Quasi-birth death processes Dr. Ahmad Al Hanbali Department of Industrial Engineering University of Twente Lecture 5: Finite QBDs

2 Lecture 5 This Lecture deals with continuous time Markov chains with finite state space and special structure as opposed to infinite space Markov chains in Lecture 3 and 4 Objective: To find equilibrium distribution of the Markov chain Lecture 5: Finite QBDs

3 Finite Quasi-Birth Death processes
In many applications, the level is the number of customers in a system can be finite Subset of state space with common ๐‘– entry is called level ๐‘– (0โ‰ค ๐‘–โ‰ค๐‘€) and denoted ๐‘™(๐‘–)={(๐‘–,0),(๐‘–,1),โ€ฆ,(๐‘–,๐‘šโˆ’1)}. This means state space is restricted โˆช 0โ‰ค๐‘–โ‰ค๐‘€ ๐‘™(๐‘–) The generator of the irreducible continuous time finite QBD has the following form ๐‘„= ๐ต 00 ๐ด 2 0 โ‹ฎ โ‹ฎ โ‹ฎ 0 ๐ด 0 ๐ด 1 ๐ด 2 โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ 0 ๐ด 0 ๐ด 1 โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ ๐ด 0 โ‹ฑ โ‹ฑ ๐ด โ€ฆ โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ ๐ด 1 ๐ด โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ ๐ด 0 ๐ต ๐‘€๐‘€ How to find the equilibrium probabilities, ๐‘๐‘„=0? Three methods Lecture 5: Finite QBDs

4 Method 1: Linear level reduction
Let us define the following matrices: ๐ถ 0 = ๐ต 00 , ๐ถ ๐‘– = ๐ด 1 โˆ’ ๐ด 2 ๐ถ ๐‘–โˆ’1 โˆ’1 ๐ด 0 , 1โ‰ค๐‘–โ‰ค๐‘€โˆ’1, ๐ถ ๐‘€ = ๐ต ๐‘€๐‘€ โˆ’ ๐ด 2 ๐ถ ๐‘€โˆ’1 โˆ’1 ๐ด 0 , - ๐ถ ๐‘– โˆ’1 ๐ด 0 records first passage probabilities from ๐‘™ ๐‘– to ๐‘™ ๐‘–+1 Theorem: the equilibrium probability ๐‘= ๐‘ 0 ,โ€ฆ, ๐‘ ๐‘€ is determined by: ๐‘ ๐‘€ ๐ถ ๐‘€ =0, ๐‘ ๐‘– =โˆ’ ๐‘ ๐‘–+1 ๐ด 2 ๐ถ ๐‘– โˆ’1 , โ‰ค๐‘–โ‰ค๐‘€โˆ’1, ๐‘–=0 ๐‘€ ๐‘ ๐‘– ๐‘’ =1 In the theorem here we are cutting off the levels from the level 0 and moving up to level M. One might also proceed in the reverse direction by starting to cut off level M down to level 0. Lecture 5: Finite QBDs

5 Method 2: Method of Folding (1)
Assume that ๐‘€=2K. Partition the state space into two subsets ๐ธ with even numbered levels and ๐ธ ๐‘ with odd numbered levels Reorder the levels of finite QBD such that the levels in ๐ธ comes first. Then Q becomes: ๐‘„= ๐ต ๐ด ๐ด ๐ด 0 ๐ด โ‹ฑ โ‹ฑ โ‹ฑ ๐ด ๐ด 0 ๐ด ๐ต ๐‘€๐‘€ ๐ด 0 ๐ด 0 ๐ด ๐ด ๐ด 0 ๐ด ๐ด โ‹ฑ โ‹ฑ โ‹ฑ ๐ด 0 ๐ด ๐ด 1 , This gives that: ๐‘ 2๐‘–+1 =โˆ’ ๐‘ 2๐‘– ๐ด 0 + ๐‘ 2๐‘–+2 ๐ด 2 ๐ด 1 โˆ’1 , ๐‘–=0,โ€ฆ,๐พโˆ’1 Lecture 5: Finite QBDs

6 Method 2: Method of Folding (2)
The vector ๐‘ 0 , ๐‘ 2 ,โ€ฆ, ๐‘ 2๐พ is proportional to the equilibrium probability ๐‘ 0 โˆ— , ๐‘ 1 โˆ— ,โ€ฆ, ๐‘ ๐พ โˆ— vector of the chain restricted to even numbered levels with generator ๐‘„ โˆ— = ๐ต 00 โˆ— ๐ด 2 โˆ— 0 โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ ๐ด 0 โˆ— ๐ด 1 โˆ— ๐ด 2 โˆ— โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ 0 ๐ด 0 โˆ— ๐ด 1 โˆ— โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ ๐ด 0 โˆ— โ‹ฑ โ‹ฑ ๐ด 2 โˆ— โ‹ฑ โ€ฆ โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ ๐ด 1 โˆ— ๐ด 2 โˆ— โ€ฆ โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฑ ๐ด 0 โˆ— ๐ต ๐‘€๐‘€ โˆ— , ๐ต 00 โˆ— = ๐ต 00 โˆ’ A 0 A 1 โˆ’1 A 2 , ๐ด 0 โˆ— =โˆ’ ๐ด 0 ๐ด 1 โˆ’1 ๐ด 0 , ๐ด 2 โˆ— =โˆ’ ๐ด 2 ๐ด 1 โˆ’1 ๐ด 2 , ๐ด 1 โˆ— = ๐ด 1 โˆ’ ๐ด 2 ๐ด 1 โˆ’1 ๐ด 0 โˆ’ ๐ด 0 ๐ด 1 โˆ’1 ๐ด 2 , ๐ต ๐‘€๐‘€ โˆ— = ๐ต ๐‘€๐‘€ โˆ’ A 2 A 1 โˆ’1 A 0 To solve a QBD with ๐‘€ levels it suffices to solve QBD with ๐‘€/2 levels. Repeating folding on smaller QBD we obtain QBD with ๐‘€/4 levels, and so forth until 2 levels Lecture 5: Finite QBDs

7 Method 3: Matrix geometric combination
Let ๐‘… be the minimal nonnegative solution of ๐ด 0 +๐‘… ๐ด 1 + ๐‘… 2 ๐ด 2 =0 Let ๐‘… be the minimal nonnegative solution of ๐ด 2 + ๐‘… ๐ด 1 + ๐‘… 2 ๐ด 0 =0 Theorem Let ๐ด= ๐ด 0 + ๐ด 1 + ๐ด 0 be irreducible and ๐œ‹๐ด= 0, ๐œ‹๐‘’=1. If ๐œ‹ ๐ด 0 ๐‘’โ‰ ๐œ‹ ๐ด 2 ๐‘’, the equilibrium probability of the finite QBD is given by ๐‘ ๐‘– = ๐‘ฅ 0 ๐‘… ๐‘– + ๐‘ฅ ๐‘€ ๐‘… ๐‘€โˆ’๐‘– , ๐‘–=0,โ€ฆ,๐‘€ where ๐‘ฅ 0 , ๐‘ฅ ๐‘€ is the solution of the system ๐‘ฅ 0 , ๐‘ฅ ๐‘€ ๐ต 00 +๐‘… ๐ด 2 ๐‘… ๐‘€ ๐ต ๐‘… ๐‘€โˆ’1 ๐ด 2 ๐‘… ๐‘€ ๐ต ๐‘€๐‘€ + ๐‘… ๐‘€โˆ’1 ๐ด 0 ๐ต ๐‘€๐‘€ + ๐‘… ๐ด 0 =0 with ๐‘ฅ 0 ๐‘–=0 ๐‘€ ๐‘… ๐‘– ๐‘’+ ๐‘ฅ ๐‘€ ๐‘–=0 ๐‘€ ๐‘… ๐‘– ๐‘’=1 Let ๐‘… be the minimal nonnegative solution of (level reversed process) Lecture 5: Finite QBDs

8 Example: uninterrupted traffic on a highway
Level dependent and independent QBDs were applied to mimic the traffic behavior on highways especially the fundamental diagram (flow-density diagram) To model this Niek Baer used the so-called four stage M/M/1 threshold queues Lecture 5: Finite QBDs

9 References Niek Baer. Queueing and Traffic, PhD thesis University of Twente 2015 G. Latouche and V. Ramaswami (1999), Introduction to Matrix Analytic Methods in Stochastic Modeling. SIAM. Lecture 5: Finite QBDs


Download ppt "Department of Industrial Engineering"

Similar presentations


Ads by Google