Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tutorial: Expression analysis part Ⅰ~ Ⅳ

Similar presentations


Presentation on theme: "Tutorial: Expression analysis part Ⅰ~ Ⅳ"— Presentation transcript:

1 Tutorial: Expression analysis part Ⅰ~ Ⅳ
2009 – 김 경 의

2 Importing array data NCBI Gene Expression Omnibus(GEO) database에서 data set download : 데이터 다운로드 후 원하는 디렉토리에 저장하고 Toolbar에서 파일을 Import한다. ^SAMPLE = GSM160089 #ID_REF = #VALUE = GCOS signal #ABS_CALL = Present/absent per Affy software !sample_table_begin ID_REF VALUE ABS_CALL

3 Import Annotation file
Affymetrix web site: RAE230A를 검색하여 annotation file을 다운로드합니다.

4 Toolbox | Expression Analysis | Set up Experiment
Grouping the samples Toolbox | Expression Analysis | Set up Experiment

5 Defining the number of groups

6 Defining the number of groups
Group을 Delete 할 수 있고, Add New Group을 이용하여 추가 할 수도 있음

7 Naming the groups

8 Assigning the samples to groups
First 6 samples right-click and select Heart, Select the last 6 samples, right-click and select Diaphragm

9 The experiment table Total present count :
The number of present calls for all samples. IQR-Expression values: The interquartile range for all samples.

10 Annotation level

11 Add annotations, Create experiment, Download sequence
Add Array Annotations: Adding array annotations Create Experiment from selection: creating a sub-experiment from a selection Download Sequence: Downloading sequences from the experiment table

12 Toolbox | Expression Analysis | General Plots | Create MA Plot
Transformation Toolbox | Expression Analysis | General Plots | Create MA Plot

13 Scatter plot view of an experiment
, Inside , Major ticks X axis Y axis

14 MA plot before transformation
M : log-intensity ratio =log₂R - log₂G A : mean log-intensity = (log₂R + log₂G)/2 M과 A값을 이용한 Plotting은 위의 log₂R 과 log₂G를 이용한 plot을 45° 회전시킨 plot으로 0값을 기준선으로 gene data를 관찰

15 Transformation Toolbox | Expression Analysis | Transformation and Normalization | Transform

16 Normalization Toolbox | Expression Analysis | Transformation and Normalization | Normalize Select a number of samples or an experiment and click Next

17 Choose normalization method

18 Normalization settings

19 MA plot after transformation

20 Comparing spread and distribution
Toolbox | Expression Analysis | Quality Control | Create Box Plot

21 Box plot of the 12samples in the experiment

22 Toolbox | Expression Analysis | General Plots | Create Histogram

23 Selecting which values the histogram should be based on
Show Table

24 Table view of a histogram

25 Group differentiation
Toolbox | Expression Analysis | Quality Control | Principal Component Analysis

26 Principal component analysis colored by group

27 Dot properties | select GSM160090 in the drop-down box | Show names
Naming the outlier Dot properties | select GSM in the drop-down box | Show names

28 Hierarchicla clustering
Toolbox | Expression Analysis | Quality Control | Hierarchical Clustering of Samples Leave the parameters at their default and click Finish Euclidean distance 1 – Pearson correlation Manhattan distance Single linkage Average linkage Complete linkage

29 Sample clustering

30 Result of hierarchical clustering of samples
Show Heat Map

31 Feature clustering Toolbox | Expression Analysis | Feature Clustering | Hierarchical Clustering of Features

32 Parameters for hierarchical clustering of features
Euclidean distance 1 – Pearson correlation Manhattan distance Single linkage Average linkage Complete linkage

33 Hierarchical clustering of features

34 K-means/medoids clustering
Toolbox | Expression Analysis | Feature Clustering | K-means/medoids Clus-tering

35 Parameters for k-means/medoids clustering

36 Parameters for k-means/medoids clustering

37 Five clusters created by k-means/medoids clustering

38 Statistical analysis – T-tests
Toolbox | Expression Analysis | Statistical Analysis | Statistical Analysis

39 Statistical analysis – ANOVA
Two groups 이상 선택했을 경우

40 Corrected p-values

41 FDR p-values compared to Bonferroni-corrected p-values

42 Filtering on FDR p-values

43 Inspecting the volcano plot
Ctrl key를 누르고 volcano plot을 누르면 두개의 view가 나타난다. 선택 된 데이터에 대해서는 dot이 붉은색으로 표현된다.

44 Filtering absent/present calls and fold change
Add search criterion (+) button을 누르면 criteria를 추가할 수 있다. Filtering genes where at least 5 out of 6 calls in each group are present. The absolute value of group mean difference should be larger than 2

45 Saving the gene list

46 New experiment Save

47 Processes that are over-represented in the small list
Toolbox | Expression Analysis | Annotation Test | Hypergeometric Tests on Annotations Highest IQR: the feature with the highest interquartile range(IQR) is kept Highest value: the feature with the highest expression value is kept

48 The result of testing on GO biological process

49 Gene Set Enrichment Analysis (GSEA)
Toolbox | Expression Analysis | Annotation Test | Gene Set Enrichment Analysis(GSEA) Original full experiment select

50 Gene set enrichment analysis based on GO biological process

51 The result of a gene set enrichment analysis based on GO biological process

52 Toolbox | Annotations test | Add Array Annotations

53 Download Sequence Select 한 개수 만큼 sequence를 download 할 수 있습니다.

54 Created sequence 선택한 개수만큼 sequence 생성

55 Saving sequence Sequence name을 하나씩 드래그하여 Navigation Area에 저장합니다.

56 Toolbox | BLAST Search | NCBI BLAST
방금 저장한 sequence를 선택 3개의 sequence를 한번에 BLAST Search 할 수 있음

57 Choose program and database

58 BLAST Search result


Download ppt "Tutorial: Expression analysis part Ⅰ~ Ⅳ"

Similar presentations


Ads by Google