Presentation is loading. Please wait.

Presentation is loading. Please wait.

High Temperature Superconductivity (HTS) Opportunities & Challenges;

Similar presentations


Presentation on theme: "High Temperature Superconductivity (HTS) Opportunities & Challenges;"— Presentation transcript:

1 High Temperature Superconductivity (HTS) Opportunities & Challenges;
Journée thématique DAPNIA «Almants supraconducteurs» High Temperature Superconductivity (HTS) Opportunities & Challenges; R&D Activities in the US Yukikazu IWASA Francis Bitter Magnet Laboratory Massachusetts Institute of Technology Cambridge, MA Orme des Merisiers, Bât. 774, Amphi Bloch, Saclay lundi 3 juillet 2006 Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

2 Outline Review of LTS & HTS Characteristics
HTS  Current Status (Bi-2223; Bi-2212; YBCO; MgB2) Key issues Opportunities HTS R&D Activities in the US Challenges Important Activities for HTS Market Penetration for HTS Conclusions Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

3 oHc2 vs.Tc Plots for LTS & HTS
150 50 100 Tc [K] oHc2 [T] YBCO OXIDE Bi-2212 Bi-2223 Bi2Sr2Can-1CunO2n+4: (BSCCO) (n=2) OXIDES (n=3) MgB2 COMPOUND Nb3Sn COMPOUND Nb-Ti ALLOY Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

4 Jc Data: LTS @4.2 K HTS @4.2 K & Above Useful range for magnet
105 Useful range for magnet YBCO (4.2; 75) MgB2 (4.2;20) 104 Nb-Ti (1.8; 4.2) Bi-2212 (4.2) Bi-2223 (4.2; 20) 103 Jc [A/mm2] Nb3Al ( 4.2) Nb3Sn (1.8; 4.2) 102 10 5 10 15 20 25 30 B [T] [Based on graph by P. Lee (12/2002; UW)] Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

5 Bcenter vs Top Zones for LTS & HTS Magnets
50 40 30 20 10 Top[K] Bcenter [T] YBCO Bi-2223/2212 MgB2 Nb3Sn Nb-Ti HTS Opportunities: higher fields over wider Top range Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

6 HTS  Current Status Bi-2223
 Available NOW as “magnet grade conductor”  Only as TAPE 0.22 4.2 mm Sumitomo Electric Bi-2223 [T. Kato (Sumitomo) (2006)] Difficult to reduce AC losses  suitable for DC coils “Pancake” coils rather than “layered” coils  many joints “large” radial gaps needed in multi-coil inserts Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

7 HTS  Current Status (continuation)
Bi-2212 Easier to minimize AC losses “Layered” coils  Suitable for multi-coil “inserts”  Available in WIRE form 0.8 mm 18 sub-element each of 37 filaments NEXANS Bi-2212 Wire [Jean-Michel Rey (2006)]  Still under development Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

8 HTS Current Status (continuation)
YBCO  Usable at LN2 temperatures (>64 K) Considered by many that YBCO less expensive than Bi-2212/2223  low materials costs, e.g., no Ag  Only as TAPE  same negative points as Bi-2223 Even AFTER MORE THAN 10 years, still the longest available ~100 m Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

9 HTS  Current Status (continuation)
MgB2  Available as WIRE  same positive points as Bi-2212  Considered by many to be price-competitive against Nb-Ti Jc (>10 K) still much less than Nb-Ti’s K) More brittle than Nb-Ti [Mike Tomsic (Hyper Tech) (2006)] Nb barrier MgB2 Cu 0.87 mm 36-filament wire Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

10 Key Magnet Issues vs. Top
Difficulty or Cost Protection Conductor Mechanical Stability Cryogenics ~100 Top [K] Range of Operation for LTS Magnets Range of Operation for HTS Magnets Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

11 → higher J Opportunities Stability
HTS magnets VERY stable  immune from disturbances, e.g., mechanical, that still afflict LTS magnets → higher J ALL HTS magnets should be “adiabatic’’  Saving in production cost Unnecessary to epoxy-impregnate HTS windings?  Saving in production cost Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

12 Opportunities (continuation)
ALL HTS magnets, except those combined with LTS magnets, should be dry, cryocooled!  the presence of liquid cryogen in the system tends to make cryogenics too “visible” to the user TWO reasons why LHe NOT needed: 1. HTS magnets CAN operate well above LHe temperatures 2. “Large” temperature margins for HTS magnets [dT/dt  0]LTS not mandatory for HTS magnets ONE serious disadvantage for dry magnets: Nearly ZERO thermal mass for the cold body ENTER: solid-cryogen-cryocooled “dry” HTS magnets Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

13 Cp(T) Plots Phase transition (35.6 K): 8.3 J/cm2 SNe SN2 Pb Ag Cu 2.0
1.5 1.0 0.5 10 20 30 40 50 60 T [K] Cp [J/cm3 K] Cp(T) Plots Llv = 2.56 J/cm3 for LHe Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

14 Opportunities (coontinuation)
When MgB2 can replace Nb-Ti, and Bi-2212/2223 and/or YBCO can replace Nb3Sn, it should be possible to make magnets  NMR/MRI; HEP; even FUSION  entirely of cryocooled HTS operating >10 K, with ZERO possibility of quenches “Dry” magnet tends to make cryogenics “invisible” Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

15 Opportunities for LTS & HTS Magnets: Present & Future DC or ~DC
Applications Current Status DC or ~DC LTS: present HTS: future LTS (marketplace); HTS (R&D) Medical MRI LTS (marketplace); HTS (R&D) Magnetic Separation Crystal (Si) grower LTS (marketplace); HTS (R&D) LTS (marketplace); HTS (R&D) NMR/MRI DC field RESEARCH MAGNET LTS (“Teva;” LHC); HTS (R&D) HEP LTS (TORE SUPRA; ITER); HTS (R&D) Fusion Electric Power  Conversion & Storage LTS (R&D); HTS (R&D) HTS bulk disk (R&D) Generator SME Flywheel DC or ~DC LTS: proven HTS: better? AC or DC Hope hinges on HTS HTS (R&D) Transmission Transformer Fault current limiter Electric Power  Distribution HTS (R&D) Motor Electric Power  End Use LTS (R&D); HTS (R&D) MAGLEV Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

16 HTS R&D Activities in the US
Nearly ALL US superconductivity R&D activities on HTS Major federal government HTS R&D activities targeted to devices (electric utilities & military) and YBCO ~$40M/Y 1) HTS electric power devices; 2) YBCO DOE Budget Principal Areas Sponsor ~$10M/Y YBCO Air Force (lightweight magnets; protection) [a] Total for two motors, 5MW (2003) & 36.5MW (2006) $80M [a] Synchronous motors (Bi-2223) for ship propulsion Navy [b] National Science Foundation ~$25M/Y Operates the NHMFL national facilities NSF [b] [c] National Institutes of Health [d] Supports, among others, four HTS NMR/MRI magnet projects currently at MIT Pays for many LTS NMR & MRI magnets [d] NIH [c] Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

17 Opportunities (continuation)
Selected 1-GHz NMR Magnet Projects Based entirely on LTS 1 GHz NRIM (Japan) 1 GHz Oxford Instruments Based on LTS/HTS 1 GHz: MIT (Bi-2223) 1.2 GHz: Grenoble/Saclay (Bi-2212) 1.3 GHz: NHMFL (Bi-2212) Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

18 3-Phase MIT 1-GHz LTS/HTS NMR Magnet Project*
Phase 2 ( ): 700 MHz 600 MHz / 100 MHz/ 55 mm RT bore 600 LTS K) 140-mm COLD bore [JASTEC] 100 HTS K) 40 Double Pancake Coils 55-mm RT bore Bi-2223-Tape Double Pancake Coil 126.5 78.2 401.6 * A US HTS activity (supported by NIH) Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

19 3-Phase MIT 1-GHz LTS/HTS NMR Magnet Project (cont.)
Phase 3 ( )*: 1 GHz 760 MHz / 240 MHz / 63 mm RT bore 175 Nb3Sn Nb-Ti 760 LTS K) 175-mm COLD bore [JASTEC (2005)] Bi-2223 240 HTS K) 63-mm RT bore 64 Double-Pancake Coils 87 * NIH yet to approve Phase 3 Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

20 1.2-GHz LTS/HTS NMR Magnet Project
Grenoble/Saclay 1.2-GHz LTS/HTS NMR Magnet Project Phase 1: 850 Cu/350 HTS 160 850 (20 T)/20 MW Cu Magnet (Grenoble) [Jean-Michel Rey (2006)] 3-Coil HTS (Bi-2212) Insert (Saclay) 136 Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

21 March Towards 1 GHz & 1.2 GHz Bo [T] YEAR 50 54 2 4 6 8 10 12 14 16 18
20 22 24 26 28 : SUPERCONDUCTING—LTS/HTS [GHz] 1 1.2 March Towards 1 GHz & 1.2 GHz MIT? Grenoble/ Saclay? : SUPERCONDUCTING—LTS [MHz] 200 220 270 360 500 600 750 800 900 930 950 1000 : NON-SUPERCONDUCTING [MHz] 30 40 60 100 MIT YEAR [Based on Kobe Steel data (1998)] 58 62 66 70 74 78 82 86 90 94 98 02 06 08 10 12 14 Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

22 Challenges Conductor Develop “long” (~10 km) conductors
Reduce AC losses in Bi-2223 & YBCO (tapes) Reduce price/performance ($/kA m) For NMR/MRI magnets Develop superconducting joints Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

23 Current-Carrying Capacity vs. Price/Length Plots
0.1 1 10 100 1,000 10,000 Price [$/m] 103 104 105 I [A] Nb3Sn Tape (10 K; 1 T) $10/kA m Nb-Ti (4.2K; 6T) $1/kA m ITER Nb3Sn (5.5 K; 13 T) $100/kA m Bi-2223 (2006) (77.3 K; s.f.) $200/kA m YBCO ( ) (77.3 K; s.f.) MgB2 ( ) (20 K; 2 T.) $2-5/kA m Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

24 Challenges (continuation)
Cryogenics Easier for HTS than for LTS, but its ratio of compressor power QRT to refrigeration power at Top, Qop , needs MUCH (QRT /Qop ) 10 100 1000 10000 1 1 W 10 W 100 W 1 kW 100 kW 20 30 40 50 60 70 80 Top [K] QRT /Qop QRT /Qop vs. Top for Selected Qop CARNOT Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

25 Comparison of HTS vs. Cu Devices
For an HTS device to compete its Cu counterpart operating at room temperature (RT), its dissipation at Top, PHTS [W/m], multiplied by the refrigerator’s compressor-to-cooling power ratio, QRT /Qop, < Cu’s Joule dissipation, PCu [W/m] PHTS  (QRT /Qop) < PCu PCu /PHTS > QRT /Qop 10 kW 100 W 1 kW 400 180 75 45 20 10 850 380 140 70 30 15 1500 500 220 110 50 22 8000 1650 600 350 120 55 4.2 77 Top [K] 1 W Qop QRT /Qop Challenge: Cryogenics QRT /Qop  , i.e., refrigerator efficiency Challenge: AC Losses PHTS  to satisfy PCu /PHTS > QRT /Qop Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

26 Comparison of Two Systems: An Illustrative Example
HTS (YBCO) & Cu Transmission “Lines”  Based on HTS Refrigeration Power Requirement, Qop  PHTS vs. PCu = I2R HTS w s s YBCO Substrate; stabilizer, etc. w s Cu Dimensions & Characteristics of “Basic (Ic =100 A) HTS tape w = 4x103 m (4 mm) s = 1x106 m (1 µm)  = 100 Ic = 100 A (77.3 K, s.f.) Jc = Ic / (ws)= 2.5x1010 A/m2 s = 1x104 m (100 µm) Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

27 Two-System Comparison (continuation)
Self-Field AC Loss Power/length, PHTS [W/m], of HTS Line composed of n 100-A “basic” tapes operated at IT = n  (It /Ic) PHTS Pcu Power Density/length, Pcu [W/m], in Cu Tape w s Cu Figure-Of-Merit (FOM): Pcu PHTS QRT Qop Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

28 Pcu /PHTS & FOM vs. i for 10-kA (nominal) Lines @77 K
10000 1000 100 10 1 0.2 0.4 0.6 0.8 i Pcu / PHTS Pcu /PHTS & FOM vs. i for 10-kA (nominal) K 33 W/km (PCu/PHTS=6460) 100 K (QRT / Qop =22) FOM=294 540 W/km (1600) 1 K (QRT / Qop =15); 107 2.8 kW/km (700) 10 K (10); 70 9.1 kW/km (380) 10 K (10); 38 HTS non-competitive to Cu 77-K operation possible, but, at least in this example, a 10-kA HTS line superior to the Cu line only when the HTS line operated at currents below 5 kA Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

29 Two-System Comparison (continuation)
Pcu PHTS QRT Qop = Ways to improve FOM: Improved YBCO K ) Thinner substrate ( ) Improved refrigerator (QRT / Qop) Challenges: YBCO Challenge: Cryogenics LTS’s Failure in Power Applications: QRT 4.2 K too large to satisfy PCu /PLTS > [QRT /Qop]4.2 K Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

30 Protection “Expensive” magnets must be protected from permanent damages LTS magnets generally rely on NZP (normal zone propagation) to spread out the resistive zone to keep the “hot spot” temperature well below 300 K NZP Quench Initiation Zone (“Hot spot”) In HTS magnets, NZP velocities (longitudinal & transverse), compared with those in LTS magnets, very slow, leading to a dangerously high “hot spot” temperature for HTS Ccd (T) very large UHTS << ULTS Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

31 Challenges (continuation)
Protection Develop fail-safe protection techniques Develop normal-zone detection techniques Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

32 Important Activities for HTS
BUILD and operate MAGNETS: LTS, LTS/HTS, HTS Enhance test facilities for evaluation of HTS Ic measurement (up to: 500 A; 30 T; 100 K; 0.5%) R&D Areas, besides conductor Protection Cryogenics QRT /Qop or efficiency even at 77 K Make cryogenics LESS visible to the user  solid-cryogen may help achieve this goal Superconducting joints (for NMR/MRI) Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

33 Market Penetration for HTS
HTS applications most likely to succeed and benefit society, i.e., market penetration, include: DC or nearly DC devices: those already conquered by LTS, e.g., NMR/MRI; HEP; even fusion If HTS replacing technology to LTS  its marketplace penetration to be decided by ECONOMICS Conductor cost/performance ($/ka m); AC losses; Cryogenic efficiency If HTS enabling technology, e.g., high-field NMR and MRI, its success dictated by HTS PERFORMANCE Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)

34 Merci beaucoup Conclusions HTS for NMR/MRI: work already started
HTS for HEP & fusion: NOT TOO EARLY to begin planning For the most prized application  in terms of sheer volume  electric power, LTS NOT ENABLING: hope hinges on HTS HTS  opportunities & challenges  will keep ALL of us innovative, relevant, and productive for a long time ! Merci beaucoup Y. IWASA (FBML) DAPNIA Day  HTS Saclay (03/07/2006)


Download ppt "High Temperature Superconductivity (HTS) Opportunities & Challenges;"

Similar presentations


Ads by Google