Download presentation
Presentation is loading. Please wait.
Published byAlbert Dixon Modified over 6 years ago
1
Clam Structures of Metal-Biphenyl Complexes: M-C12H10 (M = Sc, La, Ti)
BRAD SOHNLEIN, YUXIU LEI, and DONG-SHENG YANG Department of Chemistry University of Kentucky Lexington, KY 40506, USA $$ NSF & KSEF $$
2
Structure of Biphenyl Biphenyl is planar in the crystalline state
In the gas phase, the phenyl rings are twisted
3
Structure of Biphenyl Biphenyl is planar in the crystalline state
In the gas phase, the phenyl rings are twisted A balance between p-conjugation and steric repulsions
4
Metal-Biphenyl Complexes
Good models for conducting organometallic polymers Two types of structures have been identified in the condensed phase No gas phase structural determination of M-biphenyl complexes
5
Experimental Apparatus
biphenyl Sc, La, or Ti rod Nd:YAG UV
6
Sc-Biphenyl ZEKE Spectrum
0-0 39114 cm-1 FWHM ~ 8 cm-1 Ta Expt.
7
Sc-Biphenyl ZEKE Spectrum
568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta 12 Expt.
8
Theoretical Methodology
B3LYP and B3P86 implemented in Gaussian 03* Geometry optimizations and frequency analyses Calculate Franck-Condon integrals within the harmonic approximation Simulate spectra at finite temperatures using a Boltzman distribution * G(d,p) for all atoms, except La atom (LanL2DZ ECP)
9
Sc-Biphenyl Electronic States
ion 3A 1A Half-sandwich neutral 2A 4A
10
Sc-Biphenyl Electronic States
Clam ion 3A 1A Half-sandwich 2A neutral 4A 2B1
11
Sc-Biphenyl Electronic States
Clam ion 3A 1A Half-sandwich 4B1 neutral 2A 4A 2B1
12
Sc-Biphenyl Electronic States
Clam 3A ion 1A Half-sandwich 1A1 4B1 neutral 2A 4A 2B1
13
Sc-Biphenyl Electronic States
Clam 3B1 3A ion 1A Half-sandwich 1A1 4B1 neutral 2A 4A DS = 1 2B1
14
Sc-Biphenyl Electronic States
Clam 3B1 3A ion 1A Half-sandwich 1A1 neutral DS = 1 xxxxxxxxxxxxxxxxxxxxx 2B1
15
Sc-Biphenyl Electronic States
Clam 3B1 ion 1A1 ~ cm-1 neutral DS = 1 xxxxxxxxxxxxxxxxxxxxx 2B1
16
Sc-Biphenyl Electronic States
Clam 3B1 3A ion 1A Half-sandwich 1A1 4B1 neutral 2A 4A DS = 1 xxxxxxxxxxxxxxxxxxxxx 2B1
17
Sc-Biphenyl ZEKE Spectrum
568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Half-sandwich
18
Sc-Biphenyl ZEKE Spectra
568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Half-sandwich * 3A 4A
19
Sc-Biphenyl ZEKE Spectra
568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Half-sandwich 3A 2A * 3A 4A
20
Sc-Biphenyl ZEKE Spectra
568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. 1A 2A Half-sandwich 3A 2A * 3A 4A
21
Sc-Biphenyl ZEKE Spectra
568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Clam (C2v)
22
Sc-Biphenyl ZEKE Spectra
568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Clam (C2v) 3B1 4B1
23
Sc-Biphenyl ZEKE Spectra
568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Clam (C2v) 3B1 2B1 3B1 4B1
24
Sc-Biphenyl ZEKE Spectra
568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. 1A1 2B1 Clam (C2v) 3B1 2B1 3B1 4B1
25
Observed Transition and Vibrations (cm-1)
Expt. Theo.
26
Sc-Biphenyl Vibration Movies
n17+ = 336 cm-1 n16+ = 378 cm-1 n15+ = 568 cm-1 n32+/ n32 = 142 / 155 cm-1
27
Further Experiments Is forming a clam structure dependent on:
a.) size of metal—down the group b.) electronic species—across the row La-bp (size effect) and Ti-bp (electronic effect)
28
La-Biphenyl ZEKE Spectrum
0-0 36516 cm-1 FWHM ~ 6 cm-1 Expt.
29
La-Biphenyl ZEKE Spectrum
257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt.
30
La-Biphenyl Vibration Movies
n17+ = 257 cm-1 n16+ = 370 cm-1 n15+ = 532 cm-1 Not observed
31
Sc-Biphenyl Electronic States
Clam 3B1 3A ion 1A Half-sandwich 1A1 4B1 neutral 2A 4A DS = 1 2B1
32
La-Biphenyl Electronic States
Clam 3B1 3A 1A ion Half-sandwich 1A1 4B1 neutral 2A DS = 1 4A 2B1
33
La-Biphenyl Electronic States
Clam 3B1 3A 1A ion 1A1 ~ cm-1 neutral DS = 1 xxxxxxxxxxxxxxxxxxxxx 2B1
34
La-Biphenyl Electronic States
Clam 3B1 3A 1A ion Half-sandwich 1A1 4B1 neutral 2A DS = 1 4A xxxxxxxxxxxxxxxxxxxxx 2B1
35
La-Biphenyl ZEKE Spectrum
257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Half-sandwich
36
La-Biphenyl ZEKE Spectra
257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Half-sandwich 3A 4A
37
La-Biphenyl ZEKE Spectra
257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Half-sandwich 3A 2A 3A 4A
38
La-Biphenyl ZEKE Spectra
257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. 1A 2A Half-sandwich 3A 2A 3A 4A
39
La-Biphenyl ZEKE Spectrum
257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Clam (C2v)
40
La-Biphenyl ZEKE Spectra
257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Clam (C2v) 3B1 4B1
41
La-Biphenyl ZEKE Spectra
257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Clam (C2v) 3B1 2B1 3B1 4B1
42
La-Biphenyl ZEKE Spectra
257 36516 cm-1 370 FWHM ~ 6 cm-1 532 La Expt. 1A1 2B1 Clam (C2v) 3B1 2B1 3B1 4B1
43
La-Biphenyl ZEKE Spectrum
36 % narrower 5.5 3.5
44
La-Biphenyl ZEKE Spectra
257 36516 cm-1 370 FWHM ~ 6 cm-1 532 * La Expt. 1A1 2B1 Clam (C2v) 3B1 2B1 3B1 4B1
45
Further Experiments Is forming a clam structure dependent on:
a.) size of metal—down the group b.) electronic species—across the row La-bp (size effect) and Ti-bp (electronic effect) Sc and La: (n-1)d1 ns2 Ti: (n-1)d2 ns2
46
Ti-Biphenyl ZEKE Spectrum
Expt.
47
Ti-Biphenyl ZEKE Spectrum
194 Expt.
48
Ti-Biphenyl ZEKE Spectrum
350 194 Expt.
49
Ti-Biphenyl ZEKE Spectrum
350 194 194 Expt.
50
Ti-Biphenyl ZEKE Spectrum
350 194 326 194 Expt.
51
Ti-Biphenyl ZEKE Spectrum
350 194 326 Expt. 208 194 Expt.
52
Ti-Biphenyl ZEKE Spectrum
350 194 326 208 194 43842 0-0 350 Expt.
53
Ti-Biphenyl Electronic States
Clam 2A ion Half-sandwich 4A 1A neutral 5A 3A
54
Ti-Biphenyl Electronic States
Clam 2A ion Half-sandwich 4A 1A neutral 5A 3B1 3A 1A1
55
Ti-Biphenyl Electronic States
Clam 2A 4B1 clam ? ion 2B1 Half-sandwich 4A 5A DS = 1 1A neutral 5A 3B1 3A 1A1
56
Ti-Biphenyl Electronic States
Clam 2B1 ion 46700 cm-1 DS = 1 xxxxxxxxxxxxxxxxxxxxx neutral 1A1
57
Ti-Biphenyl ZEKE Spectrum
350 194 326 208 194 43842 350 Expt.
58
Ti-Biphenyl ZEKE Spectra
350 194 326 208 194 43842 350 Expt. 2B1 1A1
59
Ti-Biphenyl Vibration Movies
n18 +/n18 = 194 / 208 cm-1 n17+/n17 = 350 / 326 cm-1
60
Summary 11 % overestimation
61
IE Overestimation by B3P86
Average ~ 10 % bz = benzene, np = naphthalene, phnp = phenyl-naphthalene, bp = biphenyl
62
Summary 10 % correction
63
Summary 10 % correction
64
Conclusions A new “clam” binding mode for biphenyl was identified
Small (Sc) and large (La) metal atom coordination Different electron configurations: (n-1)d1 ns2 and (n-1)d2 ns2 Recorded first vibronic spectrum of a gas phase metal-biphenyl complex AIE measurements Metal- and ligand-based frequencies B3P86 overestimates IEs by ~ 10%
65
Thanks for your time
66
Size-dependent? Bond lengths: Increased radius by ~ 16 %
Sc-Sc = Å / 2 = Å La-La = Å / 2 = Å Increased radius by ~ 16 % clam still formed What about Ti? Ti-Ti = / 2 Å = Å valence electon configuration 4s23d2 CRC Handbook of Chemistry, 66th edition © 1985
67
La-biphenyl ZEKE spectrum
257 36516 cm-1 ~ 3.5 370 FWHM ~ 6 cm-1 532 La Expt. ~ 5.5 ~ 5.3 ~ 5.2
68
La-biphenyl ZEKE spectrum
36516 cm-1 ~ 3.5 FWHM ~ 6 cm-1 Expt. ~ 5.5 ~ 5.3 ~ 5.2
69
La-biphenyl ZEKE spectrum
5.5 3.5
70
Observed transition and vibrations (cm-1)
IE overestimated by 13 % Expt. Theo.
71
Ti-biphenyl ZEKE spectrum
FWHM ~ 15 cm-1 Expt.
72
Ti-biphenyl ZEKE spectrum
194 FWHM ~ 15 cm-1 Expt.
73
Ti-biphenyl ZEKE spectrum
350 194 FWHM ~ 15 cm-1 Expt.
74
Ti-biphenyl ZEKE spectrum
350 194 FWHM ~ 15 cm-1 194 Expt.
75
Ti-biphenyl ZEKE spectrum
350 194 FWHM ~ 15 cm-1 326 194 Expt.
76
Ti-biphenyl ZEKE spectrum
350 194 FWHM ~ 15 cm-1 326 194 208 Expt.
77
Ti-biphenyl ZEKE spectrum
350 194 FWHM ~ 15 cm-1 326 194 208 0-0 350 Expt. 43842 cm-1
78
Ti-biphenyl ZEKE spectrum
350 43842 cm-1 194 326 194 208 350 Expt. 4A 5A
79
Ti-biphenyl ZEKE spectrum
350 43842 cm-1 194 326 194 208 350 Expt. 4A 3A 4A 5A
80
Ti-biphenyl ZEKE spectrum
350 43842 cm-1 194 326 194 208 350 Expt. 2A 3A 4A 3A 4A 5A
81
Ti-biphenyl ZEKE spectrum
350 43842 cm-1 194 326 194 208 350 Expt. Clam 2B1 3B1 2A 3A 4A 3A 4A 5A
82
Ti-biphenyl ZEKE spectrum
350 43842 cm-1 194 326 194 208 350 Expt. Clam 2B1 1A1 2B1 3B1 2A 3A 4A 3A 4A 5A
83
Ti-biphenyl ZEKE spectrum
350 43842 cm-1 194 326 194 208 350 Expt. Clam 2B1 1A1 2B1 3B1 2A 3A 4A 3A 4A 5A
84
Observed transition and vibrations (cm-1)
IE overestimated by 6 % Expt. Theo.
85
Observed transition and vibrations (cm-1)
IE overestimated by 6 % Expt. Theo.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.