Download presentation
Presentation is loading. Please wait.
1
Hemodynamics
2
Hemodynamics… The study of the movement of blood and of the forces concerned.
3
Physical Characteristics of Circulation
5
Functional parts of the circulation…
Arteries: Transport blood. Strong vascular wall. Rapid flow of blood. Arterioles: Control valves. Strong muscular wall.
6
Cont… Capillaries: Venules:
Exchange fluid, nutrients, electrolytes & other substances. Very thin wall. Venules: Collect blood from capillaries. Coalesce into larger veins.
7
Cont… Veins: Transport blood from tissues back to heart.
Major reservoir of blood. Thin muscular wall. Low pressure.
8
Volumes of blood in different parts of circulation
9
Cross sectional areas & velocities of blood flow
cm2 2.5 Aorta 20 Small arteries 40 Arterioles 2500 Capillaries 250 Venules 80 Small viens 8 Venae Cavae
10
Cont… Velocity of blood flow is inversely proportional to cross sectional area. Under resting conditions: 33 cm/sec in aorta. 0.3 mm/sec in capillaries.
11
Pressure in various portions of circulation
12
Biophysical consideration: interrelationships among pressure, flow and resistance
13
Relations among P,R & Q Pressure gradient. Vascular resistance.
14
Cont… Ohm’s law:
15
Blood flow Quantity of blood that passes a given point in the circulation in a given period. 5000 ml/min
16
Laminar flow of blood Parabolic velocity profile during laminar flow
17
Cont… Critical velocity:
Laminar flow occurs up to a certain critical velocity. At or above this critical velocity, flow is turbulent.
18
Cont… Turbulent flow: Reynold’s number:
Blood flow in all directions and continually mixing with the vessel. Reynold’s number: The measure of the tendency for turbulence to occur.
19
Reynold’s Number Reynold’s Number = vpD/u
p is the weight-density of the fluid u is the dynamic viscosity of the fluid v is the velocity of the fluid flow D is the diameter of the tube
20
Cont… If Re < 2000 flow is not turbulent.
If Re > 3000 turbulence is almost always present.
21
Conditions where turbulent flow may occur
When rate of blood flow becomes too great. Obstruction in a vessel. Sharp turn. Viscosity of blood is low.
22
Measuring blood flow Electromagnetic flowmeter.
Ultrasonic Doppler flowmeter
23
Electromagnetic flowmeter
24
Blood pressure The force exerted by the blood against any unit area of the vessel wall. Measured in: mmHg (using mercury manometer). Cm H2o. 1 mmHg = 1.36 cm H2o
25
Methods for measuring blood pressure
Mercury manometer. High fidelity method.
26
Mercury manometer
27
High fidelity method: electronic pressure transducers
28
Resistance The impediment to blood flow in a vessel.
Can’t be measured. Instead calculated from measurement of blood flow & pressure difference.
29
Cont… Unit of resistance: peripheral resistance unit.
30
Total peripheral resistance & total pulmonary resistance
Strong constriction 4 PRU Strong dilation 0.2 PRU Mean Rt arterial P= 16 mmHg Mean Lt atrial P= 2 mmHg
31
Conductance of blood & resistance
Conductance: a measure of blood flow through a vessel for a given change in pressure. ml/ sec/ mmHg. The reciprocal of resistance.
32
Changes in diameter & conductance
Conductance of a vessel increase in proportion to the forth power of the diameter.
33
Cont… Poiseuille’s law:
Note: Q is directly proportional to the forth power of radius, demonstrating that diameter of a blood vessel plays the greatest role.
34
Importance of forth power law in determining arteriolar resistance
Arteriolar respond to nervous signals or local tissue signals. Turning off blood flow or increase flow.
35
Effect of blood hematocrit & viscosity on vascular R & Q
Viscosity: the friction developed between RBCs as they slide over each other during flow of blood. An important factor in Poiseuill’s law.
36
Greater resistance to flow
Cont… Greater viscosity Greater resistance to flow The less the flow
37
Hematocrit The percentage of blood volume occupied by erythrocytes as they are packed down in a centrifuged blood sample.
38
Effect of hematocrit on blood viscosity
39
Effects of pressure on vascular resistance & tissue Q
40
Vascular Distensibility & Function of the Arterial & Venous System
41
Vascular distensibility
Normally expressed as the fractional increase in volume for each mmHg rise in pressure. When a vessel being distensible it means it can swell out by pressure from within.
42
E.g…. Distensibility = 0.1 per mmHG or 10 %/ mmHg
43
Difference in distensibility between arteries & veins
Walls of arteries are thicker than veins. Veins are 8 х as distensible as arteries.
44
Vascular compliance The total quantity of blood that can be stored in a given portion of the circulation for each mmHg rise in pressure. It’s a measure of how easily the structure can be stretched.
45
Cont… Compliance = distensibility x volume
e.g: veins are 24x more compliant than arteries (8x as distensible x 3x as great volume) = 24
46
Compliance and distensibility are quit different
Highly distensible vessel/ slight volume Less compliance Less distensible vessel/ large volume More compliance
47
Volume- pressure curve of the arterial and venous circulation
49
Delayed compliance ( stress- relaxation) of vessels
51
Arterial pressure palsation
52
Cont… Factors affecting pulse pressure: Stroke volume.
Compliance of arterial tree.
53
Less compliance Greater rise in pressure for a given stroke volume of blood pumped into the arteries
55
Damping of pressure pulse
56
The cause of damping of pressure pulse
Compliance of the vessels Resistance to blood movement in vessels
57
Clinical methods for measuring blood pressure
Auscultatory method (sphygmomanoneter)
58
Auscultatory method Sphygmomanometer Sounds heard
59
Normal arterial blood pressure
60
Veins and their function
61
Central venous pressure (CVP)
Venous pressure as measured at Rt atrium. Measured by means of a catheter .
62
CVP and right atrial pressure
Anything that affect Rt atrial pressure usually affects venous pressure everywhere in body.
63
Ability of the Ht to pump blood out of Rt atrium
Tendency for blood to flow from peripheral vessels back to Rt atrium Regulation of Rt atrial pressure
64
Cont… Normal Rt atrial pressure = 0 mmHg
Can rise to mmHg (abnormal conditions). Can fall to -3 to -5 mmHg.
65
Measurment of venous & Rt atrial pressure
Venous pressure Rt atrial pressure By inserting a syringe needle Inserting a catheter through veins into Rt atrium
66
Venous resistance and peripheral venous pressure
67
Peripheral small veins :
4-7 mmHg > Rt atrial pressure
68
Effect of high atrial pressure on peripheral venous pressure
when Rt atrial pressure increase above 0 mmHg. When Rt atrial pressure > 4-6 mmHg.
69
Hydrostatic pressure and venous pressure
70
Hydrostatic pressure affect !!arterial pressure
1mmHg= 13.6 mm H2o Hydrostatic pressure affect !!arterial pressure
71
Venous valves and venous pump: their effect on venous pressure
72
Importance of valves. Arrangement of valves. Effect of movement of the legs.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.