Download presentation
Presentation is loading. Please wait.
1
2.4 Transformations of Functions
2
Fill out the chart as we go along…
Transformation f(x)
3
Vertical Shift y = f(x) + c or y = f(x) – c up ‘c’ units down ‘c’ units EX: y = x2 and y = x2 - 2 F(x) x y -2 4 -1 1 2 F(x)-2 x y -2 -1 1 2
4
Fill out the chart as we go along…
Transformation f(x) Vertical Shift f(x)+c
5
Horizontal Shift EX g(x) = (x + 4)2 y = f(x + c) or y = f(x – c)
left ‘c’ units right ‘c’ units EX g(x) = (x + 4)2 f (x) x y -2 4 -1 1 2 f (x+4) x y
6
Fill out the chart as we go along…
Transformation f(x) Vertical Shift f(x)+c Horizontal Shift f(x-c)
7
Graph: y = (x – 2)2 + 3 f (x) x y -2 4 -1 1 2 f (x-2)+3 x y
8
Reflecting Graphs y = f(x) or y = -f(x) The y-coordinate of each point of the graph of y = -f(x) is the negative of the y- coordinate of the corresponding on y = f(x). Reflection in the x-axis. f (x) x y -2 4 -1 1 2 -f (x) x y -2 -1 1 2
9
Fill out the chart as we go along…
Transformation f(x) Vertical Shift f(x)+c Horizontal Shift f(x-c) Reflection across x-axis -f(x)
10
y = f(-x) Reflection in the y-axis
-4 DNE -1 1 4 2 x y
11
Fill out the chart as we go along…
Transformation f(x) Vertical Shift f(x)+c Horizontal Shift f(x-c) Reflection across x-axis -f(x) Reflection across y-axis f(-x)
12
Vertical Stretch & Shrink y= cf(x) (y-coordinate multiplied by ‘c’)
If c > 1 – stretch by a factor of ‘c’ If 0 < c < 1 – shrink vertically by a factor of ‘c’
13
Fill out the chart as we go along…
Transformation f(x) Vertical Shift f(x)+c Horizontal Shift f(x-c) Reflection across x-axis -f(x) Reflection across y-axis f(-x) Vertical stretch cf(x) if c>1, stretch if 0<c<1, shrink
14
EX x y -2 4 -1 1 2 x y x y -2 -1 1 2
15
EX x y -4 DNE -1 1 4 2 x y
16
Horizontal Stretch & Shrink y = f(cx) (x-coordinate multiplied by ‘c’)
17
Fill out the chart as we go along…
Transformation f(x) Vertical Shift f(x)+c Horizontal Shift f(x-c) Reflection across x-axis -f(x) Reflection across y-axis f(-x) Vertical stretch cf(x) if c>1, stretch if 0<c<1, shrink Horizontal Stretch f(cx) if c>1, shrink if 0<c<1, stretch
18
Ex Given: find y = f(2x) and y = f(1/2x)
19
EX x y -2 4 -1 1 2 x y x y
20
Even and Odd Functions Even if f(-x) = f(x) Odd if f(-x) = -f(x)
Symmetric with respect to y-axis Odd if f(-x) = -f(x) Symmetric with respect to the origin (rotate 180º about the origin or reflect 1st in x-axis and then in y-axis.)
21
Ex even/odd/neither f(x) = x3 + x f(x) = 7 – x6 f(x) = 3x – x3
22
Make sure your chart is complete!!
Transformation f(x) Vertical Shift f(x)+c Horizontal Shift f(x-c) Reflection across x-axis -f(x) Reflection across y-axis f(-x) Vertical stretch cf(x) if c>1, stretch if 0<c<1, shrink Horizontal Stretch f(cx) if c>1, shrink if 0<c<1, stretch
23
Homework Pg 191 #1-35 odd, 41, 43, 61-66
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.