Download presentation
Presentation is loading. Please wait.
1
Find the x and y intercepts. π₯β3π¦= 9 π¦= 3x -4x + y = 10
Warm Up Find the x and y intercepts. π₯β3π¦= 9 π¦= 3x -4x + y = 10 (9,0) and (0,-3) (0,0) and (0,0) ( β5 2 ,0) and (0,10)
2
Objective: I can understand transformations of functions.
Families of Functions Objective: I can understand transformations of functions.
3
Vocabulary Parent Function Simplest form in a set of functions.
Transformation: Change in the size or position of a function Translation: Moves a function horizontally or vertically Reflection: Reflects a function across a line of reflection Dilation: Changes a function size Domain: Set of all input values (x values) Range: Set of all output values (y values)
4
4 Parent Functions Absolute Value Quadratic π¦= π₯
Domain: all real numbers Domain: all real numbers Range: y 0 β₯ Range: π¦ β₯0
5
Square Root Cubic π¦= π₯ π¦=π₯3 Domain: π₯ β₯0 Domain: πππ ππππ ππ’πππππ
π¦= π₯ π¦=π₯3 Domain: π₯ β₯0 Domain: πππ ππππ ππ’πππππ Range: π¦ β₯0 Range: πππ ππππ ππ’πππππ
6
Dilations x y1 y2 -2 2 4 -1 1 Dilations: Vertical stretch compression
Graph x y1 y2 -2 2 4 -1 1 Dilations: Vertical stretch compression
7
Translations Set your calculator window to: Graph x y1 y2 3 1 4 2 7 9
3 1 4 2 7 9 12 Vertical Translation: k units Up: Down:
8
Reflections x y1 y3 -2 error 1.4 -1 1 2 x y1 y2 1 -1 2 1.4 -1.4 3 1.7
Graph x y1 y3 -2 error 1.4 -1 1 2 x y1 y2 1 -1 2 1.4 -1.4 3 1.7 -1.7 Reflections: Across x-axis Across y-axis
9
Transformation of f(x)
= π₯ Translation: Horizontal (k > 0) Translation: Vertical (k > 0) Right h units π π₯ββ Up k units π π₯ +π π π₯+β π π₯ βπ Left h units Down k units π₯ββ π₯ +π Reflection Dilation: Vertical by a factor of a πβ
π π₯ π π₯ Across x-axis βπ π₯ β π₯ Stretch: π>1 π βπ₯ Across y-axis Compression: N/A 0<π<1 π¦=Β±π π₯ββ +π
10
Pkt. Parent Functions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.