Presentation is loading. Please wait.

Presentation is loading. Please wait.

Scintillation Detectors

Similar presentations


Presentation on theme: "Scintillation Detectors"— Presentation transcript:

1 Scintillation Detectors
Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2009 Detecto Summer Lecture Series

2 Elton Smith / Scintillation Detectors
Experiment basics B field ~ 5/3 T p = 0.3 B R = 1.5 GeV/c L = ½ p R = 4.71 m bp = p/√p2+mp2 = bK = p/√p2+mK2 = R = 3m tp = L/bpc = ns tK = L/bKc = ns DtpK = 0.76 ns Particle Identification by time-of-flight (TOF) requires Measurements with accuracies of ~ 0.1 ns Elton Smith / Scintillation Detectors

3 Measure the Flight Time between two Scintillators
Particle Trajectory 450 ns Stop Disc 20 cm TDC Start Disc 300 cm 400 cm 100 cm Elton Smith / Scintillation Detectors

4 Propagation velocities
c = 30 cm/ns vscint = c/n = 20 cm/ns veff = 16 cm/ns vpmt = 0.6 cm/ns vcable = 20 cm/ns Dt ~ 0.1 ns Dx ~ 3 cm Elton Smith / Scintillation Detectors

5 TOF scintillators stacked for shipment
Elton Smith / Scintillation Detectors

6 CLAS detector with FC pulled apart
Elton Smith / Scintillation Detectors

7 Start counter assembly
Elton Smith / Scintillation Detectors

8 Elton Smith / Scintillation Detectors
Scintillator types Organic Liquid Economical messy Solid Fast decay time long attenuation length Emission spectra Inorganic Anthracene Unused standard NaI, CsI Excellent g resolution Slow decay time BGO High density, compact Elton Smith / Scintillation Detectors

9 Photocathode spectral response
Elton Smith / Scintillation Detectors

10 Scintillator thickness
Minimizing material vs. signal/background CLAS TOF: 5 cm thick Penetrating particles (e.g. pions) loose 10 MeV Start counter: 0.3 cm thick Penetrating particles loose 0.6 MeV Photons, e+e− backgrounds ~ 1MeV contribute substantially to count rate Thresholds may eliminate these in TOF Elton Smith / Scintillation Detectors

11 Elton Smith / Scintillation Detectors
Light guides Goals Match (rectangular) scintillator to (circular) pmt Optimize light collection for applications Types Plastic Air None “Winston” shapes Elton Smith / Scintillation Detectors

12 Reflective/Refractive boundaries
Scintillator n = 1.58 acrylic PMT glass n = 1.5 Elton Smith / Scintillation Detectors

13 Reflective/Refractive boundaries
Air with reflective boundary Scintillator n = 1.58 PMT glass n = 1.5 (reflectance at normal incidence) Elton Smith / Scintillation Detectors

14 Reflective/Refractive boundaries
air Scintillator n = 1.58 PMT glass n = 1.5 Elton Smith / Scintillation Detectors

15 Reflective/Refractive boundaries
Scintillator n = 1.58 acrylic Large-angle ray lost PMT glass n = 1.5 Acceptance of incident rays at fixed angle depends on position at the exit face of the scintillator Elton Smith / Scintillation Detectors

16 Winston Cones - geometry
Elton Smith / Scintillation Detectors

17 Winston Cone - acceptance
Elton Smith / Scintillation Detectors

18 Photomultiplier tube, sensitive light meter
Gain ~ VN ~ Electrodes Anode g e− Photocathode N Dynodes 56 AVP pmt Elton Smith / Scintillation Detectors

19 Elton Smith / Scintillation Detectors
Voltage Dividers d1 d2 d3 dN dN-1 dN-2 a k g 4 2.5 1 16.5 RL +HV −HV Equal Steps – Max Gain 6 2.5 1 1.25 1.5 1.75 3.5 4.5 8 10 44 RL Progressive Timing Linearity 4 2.5 1 1.4 1.6 3 21 RL Intermediate Elton Smith / Scintillation Detectors

20 Elton Smith / Scintillation Detectors
Voltage Divider Active components to minimize changes to timing and rate capability with HV Capacitors for increased linearity in pulsed applications Elton Smith / Scintillation Detectors

21 Elton Smith / Scintillation Detectors
High voltage Positive (cathode at ground) low noise, capacitative coupling Negative Anode at ground (no HV on signal) No (high) voltage Cockcroft-Walton bases Elton Smith / Scintillation Detectors

22 Effect of magnetic field on pmt
Elton Smith / Scintillation Detectors

23 Elton Smith / Scintillation Detectors
Housing Elton Smith / Scintillation Detectors

24 Compact UNH divider design
Elton Smith / Scintillation Detectors

25 Signal for passing tracks
Elton Smith / Scintillation Detectors

26 Single photoelectron signal
Elton Smith / Scintillation Detectors

27 Elton Smith / Scintillation Detectors
Dark counts Solid : Sea level Dashed: 30 m underground After-pulsing and Glass radioactivity Thermal Noise Cosmic rays Elton Smith / Scintillation Detectors

28 Elton Smith / Scintillation Detectors
Electronics Measure time Measure pulse height anode trigger dynode Elton Smith / Scintillation Detectors

29 Formalism: Measure time and position
PL PR TL TR X=0 X X=−L/2 X=+L/2 Mean is independent of x! Elton Smith / Scintillation Detectors

30 Measure the Flight Time between two Scintillators
Particle Trajectory 450 ns Stop Disc 20 cm TDC Start Disc 300 cm 400 cm 100 cm Elton Smith / Scintillation Detectors

31 From single-photoelectron timing to counter resolution
The uncertainty in determining the passage of a particle through a scintillator has a statistical component, depending on the number of photoelectrons Npe that create the pulse. Note: Parameters for CLAS Intrinsic timing of electronic circuits Combined scintillator and pmt response Average path length variations in scintillator Single Photoelectron Response Elton Smith / Scintillation Detectors

32 Formalism: Measure energy loss
PL PR TL TR X=0 X X=−L/2 X=+L/2 Geometric mean is independent of x! Elton Smith / Scintillation Detectors

33 Energy deposited in scintillator
Elton Smith / Scintillation Detectors

34 Elton Smith / Scintillation Detectors
Velocity vs. momentum p+ K+ p Elton Smith / Scintillation Detectors

35 Example: Kaon and pion time differences
Momentum P = 1 GeV Kaons 1.116 GeV 0.896 2.26 18.60 ns pions 1.010 GeV 0.990 7.21 16.84 ns Flight path d = 500 cm tK – tp = 1.76 ns Difference observable with dt~0.15 ns Elton Smith / Scintillation Detectors

36 Elton Smith / Scintillation Detectors
Summary Scintillator counters have a few simple components Systems are built out of these counters Fast response allows for accurate timing The time resolution required for particle identification is the result of the time response of individual components scaled by √Npe Elton Smith / Scintillation Detectors

37 Elton Smith / Scintillation Detectors
Backup slides Elton Smith / Scintillation Detectors


Download ppt "Scintillation Detectors"

Similar presentations


Ads by Google